Navigation Links
Earth's crust was unstable in the Archean eon and dripped down into the mantle
Date:12/30/2013

Earth's mantle temperatures during the Archean eon, which commenced some 4 billion years ago, were significantly higher than they are today. According to recent model calculations, the Archean crust that formed under these conditions was so dense that large portions of it were recycled back into the mantle. This is the conclusion reached by Dr. Tim Johnson who is currently studying the evolution of the Earth's crust as a member of the research team led by Professor Richard White of the Institute of Geosciences at Johannes Gutenberg University Mainz (JGU). According to the calculations, this dense primary crust would have descended vertically in drip form. In contrast, the movements of today's tectonic plates involve largely lateral movements with oceanic lithosphere recycled in subduction zones. The findings add to our understanding of how cratons and plate tectonics, and thus also the Earth's current continents, came into being.

Because mantle temperatures were higher during the Archean eon, the Earth's primary crust that formed at the time must have been very thick and also very rich in magnesium. However, as Johnson and his co-authors explain in their article recently published in Nature Geoscience, very little of this original crust is preserved, indicating that most must have been recycled into the Earth's mantle. Moreover, the Archean crust that has survived in some areas such as, for example, Northwest Scotland and Greenland, is largely made of tonalitetrondhjemitegranodiorite complexes and these are likely to have originated from a hydrated, low-magnesium basalt source. The conclusion is that these pieces of crust cannot be the direct products of an originally magnesium-rich primary crust. These TTG complexes are among the oldest features of our Earth's crust. They are most commonly present in cratons, the oldest and most stable cores of the current continents.

With the help of thermodynamic calculations, Dr. Tim Johnson and his collaborators at the US-American universities of Maryland, Southern California, and Yale have established that the mineral assemblages that formed at the base of a 45-kilometer-thick magnesium-rich crust were denser than the underlying mantle layer. In order to better explore the physics of this process, Professor Boris Kaus of the Geophysics work group at Mainz University developed new computer models that simulate the conditions when the Earth was still relatively young and take into account Johnson's calculations.

These geodynamic computer models show that the base of a magmatically over-thickened and magnesium-rich crust would have been gravitationally unstable at mantle temperatures greater than 1,500 to 1,550 degrees Celsius and this would have caused it to sink in a process called 'delamination'. The dense crust would have dripped down into the mantle, triggering a return flow of mantle material from the asthenosphere that would have melted to form new primary crust. Continued melting of over-thickened and dripping magnesium-rich crust, combined with fractionation of primary magmas, may have produced the hydrated magnesium-poor basalts necessary to provide a source of the tonalitetrondhjemitegranodiorite complexes. The dense residues of these processes, which would have a high content of mafic minerals, must now reside in the mantle.


'/>"/>

Contact: Dr. Tim E. Johnson
tjohnson@uni-mainz.de
49-613-139-26825
Johannes Gutenberg Universitaet Mainz
Source:Eurekalert

Related biology news :

1. Research unearths new dinosaur species
2. Geosphere features top geoscience technology, including LiDAR, EarthScope, CHIRP, ALSM, and IODP
3. Chapman University unearths data in animal habitat selection that counters current convention
4. Rare earths in bacteria
5. Unexpected crustacean diversity discovered in northern freshwater ecosystems
6. A minute crustacean invades the red swamp crayfish
7. An ocean away: 2 new encrusting anemones found in unexpected locations
8. The discovery of a new genus of crustacean and 5 new species
9. Fossil record shows crustaceans vulnerable as modern coral reefs decline
10. Magma in Earths mantle forms deeper than once thought
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
(Date:6/7/2016)... 2016  Syngrafii Inc. and San Antonio Credit ... includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution ... will result in greater convenience for SACU members ... maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)...   The Weather Company , an IBM Business (NYSE: ... capability in which consumers will be able to interact with ... via voice or text and receive relevant information about the ... Marketers have long sought an advertising solution that can create ... relevant and valuable; and can scale across millions of interactions ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... for Amgen, will join the faculty of the University of North Carolina ... professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... - FACIT has announced the creation of a ... Propellon Therapeutics Inc. ("Propellon" or "the Company"), to ... of first-in-class WDR5 inhibitors for the treatment of ... an exciting class of therapies, possessing the potential ... patients. Substantial advances have been achieved with the ...
Breaking Biology Technology: