Navigation Links
Early initiation of Arctic sea-ice formation
Date:7/15/2009

Significant sea ice formation occurred in the Arctic earlier than previously thought is the conclusion of a study published this week in Nature. "The results are also especially exciting because they suggest that sea ice formed in the Arctic before it did in Antarctica, which goes against scientific expectation," says scientific team member Dr Richard Pearce of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton (NOCS).

The international collaborative research team led by Dr Catherine Stickley and Professor Naln Ko of the University of Troms and Norwegian Polar Insitute (Troms) analysed oceanic sediment cores collected from the Lomonosov ridge in the central Arctic by Integrated Ocean Drilling Program Expedition 302 ('ACEX'). Previous analyses of cores drilled in this region revealed ice-rafted debris dating back to the middle Eocene epoch, prompting suggestions that ice appeared in the Arctic about 46 million years ago. But records of ice-rafted debris do not differentiate sea ice from glacial (continental) ice, which is important because sea ice influences climate by directly affecting oceanatmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity.

Instead of focusing solely on ice-rafted debris, Stickley and her colleagues also garner information about ancient climate by analysing fossilised remains of tiny single-celled plants called diatoms in the sediment cores. Today, different living diatom species are adapted to particular environmental conditions. Assuming that this was also true in the past for which there is ample evidence the presence of particular diatom species in sediment cores is diagnostic of conditions prevailing at the time.

Coincident with ice-rafted debris in the cores, the researchers found high abundances of delicately silicified diatoms belong to the genus Synedropsis. "We were astonished by this", said team member Richard Pearce of NOCS, who imaged the samples using a scanning electron microscope at the NOCS: "Weakly silicified diatoms are preserved only under exceptional circumstances, so to find fossilised Synedropsis species so well preserved and in such abundance is truly remarkable." In fact, the ACEX Synedropsis species represent the earliest known fossil record of sea-ice diatoms.

The researchers attribute the presence of Synedropsis fossils in these sediments to the presence of sea ice, and silica-enriched waters that favour their preservation. They propose that, like Synedropsis species found in polar regions today, the ACEX species were also sea-ice specialists uniquely adapted for surviving the lengthy polar darkness and freezing temperatures. "These diatoms provide the most compelling evidence for ancient sea ice, as they rely on this medium for their survival," said Catherine Stickley. Moreover, their analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of ice-rafted debris at this time.

"It is likely that sea ice formed in autumn and winter and melted in spring and summer, as seasonal sea ice does today," they say. Synedropsis species probably over-wintered within the sea ice and then bloomed there in the spring when there was enough sunlight. They would have been released into stratified surface waters as the ice melted, rapidly sinking to the sea bottom as aggregates, leaving other diatom species to dominate summer production. And, indeed, these seasonal changes can be discerned in the sediment cores.

The researchers conclude from their analysis, which cover a two-million year period, that episodic sea ice formation in marginal shelf areas of the Arctic started around 47.5 million years ago, about a million years earlier than previous estimates based on ice-raft debris evidence only. This appears to have been followed half a million years later by the onset of seasonal sea-ice formation in offshore areas of the central Arctic, and about 24 million years before major ice-sheet expansion in the region.

The findings have potentially important implications for climate. Spring sea ice and summer cloud formation would have reduced oceanic heat loss to the atmosphere and increased the amount of solar radiation reflected back out into space. "A stable sea-ice regime also suggests the possibility of concomitant glacial ice," say the researchers, and indeed they find some evidence for the presence of small isolated glaciers at the time.

Furthermore, their data indicate that sea ice formed in the Arctic before it did in Antarctica. Atmospheric levels of the greenhouse gas carbon dioxide were declining in the middle Eocene, one of the reasons postulated in causing the Earth to cool. However, the new findings imply that the threshold for sea-ice formation was first crossed in the Arctic, which, say the authors, is "a hypothesis opposite to that modelled for glacial ice, whereby Antarctica is shown to glaciate much earlier (that is, at higher levels of carbon dioxide) than circum-Arctic continents."


'/>"/>

Contact: Dr. Rory Howlett
r.howlett@noc.soton.ac.uk
44-238-059-8490
National Oceanography Centre, Southampton (UK)
Source:Eurekalert

Related biology news :

1. Early-life experience linked to chronic diseases later in life: UBC research
2. PNNL scientist garners early career presidential award
3. 2 Fred Hutchinson Cancer Research Center scientists receive Presidential Early Career Award
4. Explosive growth of life on Earth fueled by early greening of planet
5. First direct evidence of substantial fish consumption by early modern humans in China
6. Chromosomal problems affect nearly all human embryos
7. Complications early in pregnancy or in previous pregnancies adversely affect existing or subsequent pregnancies
8. Study shows Chronix technology using serum DNA can identify early presence of disease
9. Major breakthrough in early detection and prevention of AMD
10. Early identification of dementia increasingly difficult
11. New early detection studies of lung cancer in non-smokers launched today
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2016)... Feb. 2, 2016 This BCC Research ... market by reviewing the recent advances in high ... drive the field forward. Includes forecast through 2019. ... the challenges and opportunities that exist in the ... solution developers, as well as IT and bioinformatics ...
(Date:2/1/2016)... -- Rising sales of consumer electronics coupled ... gesture control market size through ... electronics coupled with new technological advancements to drive global ... through 2020   --> Rising ... to drive global touchfree intuitive gesture control market ...
(Date:1/25/2016)... Pa. , Jan. 25, 2016   Unisys Corporation ... system at John F. Kennedy (JFK) International Airport, New ... Protection (CBP) identify imposters attempting to enter the ... not belong to them. pilot testing of the ... initially at three terminals at JFK during January 2016. --> ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... ... ... Global Stem Cells Group has announced an inaugural conference and stem cell ... 24-March 6, 2016. The new facility will provide advanced protocols and state-of-the-art techniques in ... CEO Benito Novas will host the event, which will begin with a stem cell ...
(Date:2/12/2016)... 12, 2016  BD (Becton, Dickinson and Company) (NYSE: ... today announced the launch of the BD CLiC™ System ... (AGBT) Meeting. --> ... by providing cost effective NGS library preparation with limited ... fully integrated, next generation sequencing (NGS) library prep instrument, ...
(Date:2/11/2016)... Non-profit Consortium Aims to Generate Genomic Information for ... Discovery --> --> The ... sequence 100,000 individuals. It is intended to initially include populations ... North and East Asian countries. --> ... focus on creating phased reference genomes for all major Asian ...
(Date:2/11/2016)... Germany and GERMANTOWN, Maryland ... ; Frankfurt Prime Standard: QIA) today announced the introduction ... for gene expression profiling, expanding QIAGEN,s portfolio of Sample ... enable researchers to select from over 20,000 human genes ... interactions between genes, cellular phenotypes and disease processes. ...
Breaking Biology Technology: