Navigation Links
ETH Zurich study on salmonella self-destruction
Date:8/21/2008

ETH Zurich biologists, led by Professors Martin Ackermann and Wolf-Dietrich Hardt, in collaboration with Michael Doebeli of the University of British Colombia in Vancouver (CN), have been able to describe how random molecular processes during cell division allow some cells to engage in a self-destructive act to generate a greater common good, thereby improving the situation of the surviving siblings.

Survival strategy

The biologists investigated this unusual biological concept using the pathogenic salmo-nella bacteria as an example. Diseases caused by salmonellae are very unpleasant and even life-threatening. When contaminated food is consumed for example, egg-based foods or chicken and meat salmonella bacteria enter the gastro-intestinal tract where it triggers infection. Vomiting and diarrhoea can last for days.

Normally, salmonellae grow poorly in the intestine because they are not competitive with other bacteria of the gut. However, this dynamic changes if salmonellae induce an in-flammatory response, namely diarrhoea, which suppresses the other bacteria. The in-flammation is triggered by salmonellae penetrating into the intestinal tissues. Once in-side, salmonellae is killed by the immune system. This in turn creates a conflict: salmo-nellae are either suppressed by the other bacteria in the gut, or die while trying to elimi-nate these competitors.

As Ackermann, Hardt and Doebeli report, salmonellae have found a surprising solution to this conflict. Inside the gut, the samonella bacteria forms two groups that engage in job-sharing. A first group invades the tissue, triggers an inflammation, then dies. A sec-ond group waits inside the gut until the inactivation of the normal intestinal flora gives them an opportunity to strike.This second group then multiplies unhindered.

Random processes and self-sacrifice

What determines whether an individual salmonella bacterium cell self-sacrifices, or whether it will wait and benefit from the sacrifice of others? The two groups are clones of the same genotype, so genetic differences do not play a role. Rather, the difference between the two groups is a result of random molecular processes during cell division. Cellular components are randomly distributed between the two daughter cells with each cell receiving a different amount. The resulting imbalance can be amplified and lead to different properties of the clonal siblings.

In recent years it has been recognized that such random processes in a cell can have a large influence on individual cells. The work by the ETH Zurich researchers reveals a new biological explanation for this phenomenon. The two salmonella phenotypes share their work, with the result being that they achieve what a single phenotype on its own would not be capable of doing. This scenario is fundamentally different from the usual explanations and presupposes that individual phenotypes interact and have an effect on one another. The self-sacrifice of phenotypes may be quite common among pathogenic bacteria, for example, among the pathogens causing diarrhoea after antibiotic treatment (clostridia) or pneumonia (streptococci).

Essential findings

Professor Ackermann says that "Random processes could promote job-sharing in many different types of organisms." Many bacteria manufacture substances which are toxic to their hosts but which are only released into the host environment if the bacteria sacrifice themselves - if this is the sole method to get the toxin out of the cell. This is why every cell makes a decision: toxin and death or no toxin.

He stresses that it would not have been possible to study this theory so thoroughly with-out the collaboration that took place among the three specialist groups: Professor Hardt's group specialises in salmonella infections; Professor Doebeli is a mathematician and theoretical biologist; and Professor Ackermann's group focuses on phenotypic noise.


'/>"/>

Contact: Professor Dr. Wolf-Dietrich Hardt
wolf-dietrich.hardt@micro.biol.ethz.ch
41-446-325-143
ETH Zurich/Swiss Federal Institute of Technology
Source:Eurekalert

Related biology news :

1. Image Solutions, Inc. Acquires Zurich Biostatistics, Inc.
2. ETH Zurich professor Ari Helenius awarded Benoist Prize
3. New ETH Zurich article published in scientific journal Nature
4. ETH Zurich competence center ESC introduces energy strategy
5. ETH Zurich researchers develop antibody test
6. IBM and ETH Zurich form strategic partnership in nanoscience
7. ETH Zurich and IBM improve diagnosis of osteoporosis
8. Childhood obesity indicates greater risk of school absenteeism, Penn study reveals
9. A study by the MUHC and McGill University opens a new door to understanding cancer
10. Study begins to reveal clues to the cause and progression of sepsis
11. Clones on task serve greater good, evolutionary study shows
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... Research and Markets has announced the addition ... report to their offering. ... The global ... from USD 6.21 Billion in 2016, growing at a CAGR of ... bioinformatics market is driven by the growing demand for nucleic acid ...
(Date:11/14/2016)... , Nov. 14, 2016  Based on ... market, Frost & Sullivan recognizes FST Biometrics ... Award for Visionary Innovation Leadership. FST Biometrics ... biometric identification market by pioneering In Motion ... for instant, seamless, and non-invasive verification. This ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... PUNE, India , December 6, 2016 ... (Microfluidic Chips, Micropump, Microneedle), Material (Polymer, Glass, Silicon), Application (Genomics, Proteomics, ... 2021", published by MarketsandMarkets, the global market is projected to reach ... at a CAGR of 19.2% during the forecast period (2016 to ... ...
(Date:12/6/2016)... -- The Texas Medical Center (TMC) and the ... announced the establishment of a new international BioBridge, a ... and the Texas Medical Center, the largest ... and the Texas Medical Center, with the support of ... health innovation ecosystem where emerging technologies can be developed, ...
(Date:12/5/2016)... (PRWEB) , ... December 05, 2016 , ... ... nanocellulose, including both cellulose nanocrystals and cellulose nanofibrils. The composition claims are ... There are also claims directed to combination with polymers, carbon fibers, graphene, and ...
(Date:12/5/2016)... CHICAGO , December 5, 2016 ... report, "Cell Expansion Market, by Products (Consumable, Instruments, ... Applications (Regenerative Medicine and Stem Cell Research, Cancer, ... Research Institutes, Cell Banks) - Global Revenue, Trends, ... by Scalar Market Research, the global cell expansion ...
Breaking Biology Technology: