Navigation Links
ETH Zurich and IBM improve diagnosis of osteoporosis
Date:7/2/2008

With the goal of developing an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the ETH Zurich Departments of Mechanical and Process Engineering and Computer Science teamed up with supercomputing experts at IBM's Zurich Research Laboratory. The breakthrough method developed by the team combines density measurements with a large-scale mechanical analysis of the inner-bone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic "heat map" of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture. "With that knowledge, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can best determine the location of the damage," explains Dr. Costas Bekas of IBM's Computational Sciences team in Zurich. "This work is an excellent showcase of the dramatic potential that supercomputers can have for our everyday lives."

The joint team utilized the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer to conduct the first simulations on a 5 by 5 mm specimen of real bone. Within 20 minutes, the supercomputer simulation generated 90 Gigabytes of output data. "It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail", says Professor Ralph Mller, Director of the ETH Zurich Institute for Biomechanics.

Going beyond static bone strength

Ten years ago, the world's most sophisticated supercomputer, called Deep Blue, would not have been able to handle the sheer size of the calculations. Even with sufficient system memory, it would have taken roughly a week of computing time - too long for meaningful impact on diagnosis and treatment.

"Ten years from now, today's supercomputers' performance will be available in desktop systems, making such simulations of bone strength a routine practice in computer tomography," predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM's Zurich Research Laboratory.

ETH Zurich Professor Peter Arbenz, who initiated the collaboration of the involved groups, explains that what was first needed was state of the art in numerical algorithms in order to solve extremely large problems in surprisingly short time, and that it is the first fundamental step towards clinical use of large scale bone simulations. "We are at the beginning of an exciting journey. This line of research must absolutely be continued in order to achieve our goal," he states. Scientists in future aim to advance simulation techniques to go beyond the calculation of static bone strength to the simulation of the actual formation of the fractures for individual patients, in yet another step towards the fast, reliable and early detection of people at high fracture risk.


'/>"/>

Contact: Professor Ralph Muller
ram@ethz.ch
41-446-324-592
ETH Zurich/Swiss Federal Institute of Technology
Source:Eurekalert

Related biology news :

1. IBM and ETH Zurich form strategic partnership in nanoscience
2. ETH Zurich researchers develop antibody test
3. ETH Zurich competence center ESC introduces energy strategy
4. New ETH Zurich article published in scientific journal Nature
5. ETH Zurich professor Ari Helenius awarded Benoist Prize
6. Image Solutions, Inc. Acquires Zurich Biostatistics, Inc.
7. Researchers coat titanium with polymer to improve integration of joint replacements
8. Canada-India RFID project looks to improve traffic flow, reduce pollution
9. New Web resource to improve crop engineering
10. 8-day undersea mission begins experiment to improve coral reef restoration
11. A nutritional supplement could improve the clinical situation of ICU patients
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... ALAMEDA, Calif. , Dec. 8, 2016  Singulex, ... Single Molecule Counting technology, entered into a license and ... in serving science. The agreement provides Singulex access to ... Europe is used to diagnose ... the United States to aid in assessing ...
(Date:12/7/2016)... Israel , December 7, 2016 BioCatch ... the expansion of its patent portfolio, which grew to over 40 granted ... , , ... its recently filed patent entitled " System, Device, and Method ... technology that enables device makers to forego costly hardware components needed to ...
(Date:12/7/2016)... --  Veridium , a leader in biometrics-based authentication ... James Stickland . Stickland, a seasoned financial ... served in senior executive roles for HSBC, JPMorgan ... a pipeline of venture capital and accelerating innovation ... as managing director of U.K.-based fintech firm Red ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , December 8, 2016 ... für Molekulargenetik, erweitert seine Palette an anpassbaren SureSeq™ ... Custom FH Panels, das ein schnelles und kostengünstiges ... Das Panel bietet eine Erkennung von Einzel-Nukleotid-Variationen (Single ... mit einem einzigen kleinen Panel und ermöglicht eine ...
(Date:12/8/2016)... ... 08, 2016 , ... Microbial genomics leader, uBiome, joins Google, ... of just six company finalists in the Health & Medicine category. Over 1,000 ... as finalists in this year’s awards include Google, SpaceX, Oculus, and SolarCity. Individuals ...
(Date:12/8/2016)... N.J. , Dec. 8, 2016 ... augmentation remediation technologies and selected NewTechBio,s NT-MAX ... a microbial based beneficial bacteria, in conjunction with ... to correct deficiencies with National Pollutant Discharge Elimination ... 281-8H has experienced a steady history of elevated ...
(Date:12/7/2016)... ... December 07, 2016 , ... ... that “in the setting of previously treated, advanced pancreatic cancer, liquid biopsies are ... optimal patient population and timing of blood sampling may improve the value of ...
Breaking Biology Technology: