Navigation Links
ETH Zurich and IBM improve diagnosis of osteoporosis
Date:7/2/2008

With the goal of developing an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the ETH Zurich Departments of Mechanical and Process Engineering and Computer Science teamed up with supercomputing experts at IBM's Zurich Research Laboratory. The breakthrough method developed by the team combines density measurements with a large-scale mechanical analysis of the inner-bone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic "heat map" of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture. "With that knowledge, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can best determine the location of the damage," explains Dr. Costas Bekas of IBM's Computational Sciences team in Zurich. "This work is an excellent showcase of the dramatic potential that supercomputers can have for our everyday lives."

The joint team utilized the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer to conduct the first simulations on a 5 by 5 mm specimen of real bone. Within 20 minutes, the supercomputer simulation generated 90 Gigabytes of output data. "It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail", says Professor Ralph Mller, Director of the ETH Zurich Institute for Biomechanics.

Going beyond static bone strength

Ten years ago, the world's most sophisticated supercomputer, called Deep Blue, would not have been able to handle the sheer size of the calculations. Even with sufficient system memory, it would have taken roughly a week of computing time - too long for meaningful impact on diagnosis and treatment.

"Ten years from now, today's supercomputers' performance will be available in desktop systems, making such simulations of bone strength a routine practice in computer tomography," predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM's Zurich Research Laboratory.

ETH Zurich Professor Peter Arbenz, who initiated the collaboration of the involved groups, explains that what was first needed was state of the art in numerical algorithms in order to solve extremely large problems in surprisingly short time, and that it is the first fundamental step towards clinical use of large scale bone simulations. "We are at the beginning of an exciting journey. This line of research must absolutely be continued in order to achieve our goal," he states. Scientists in future aim to advance simulation techniques to go beyond the calculation of static bone strength to the simulation of the actual formation of the fractures for individual patients, in yet another step towards the fast, reliable and early detection of people at high fracture risk.


'/>"/>

Contact: Professor Ralph Muller
ram@ethz.ch
41-446-324-592
ETH Zurich/Swiss Federal Institute of Technology
Source:Eurekalert

Related biology news :

1. IBM and ETH Zurich form strategic partnership in nanoscience
2. ETH Zurich researchers develop antibody test
3. ETH Zurich competence center ESC introduces energy strategy
4. New ETH Zurich article published in scientific journal Nature
5. ETH Zurich professor Ari Helenius awarded Benoist Prize
6. Image Solutions, Inc. Acquires Zurich Biostatistics, Inc.
7. Researchers coat titanium with polymer to improve integration of joint replacements
8. Canada-India RFID project looks to improve traffic flow, reduce pollution
9. New Web resource to improve crop engineering
10. 8-day undersea mission begins experiment to improve coral reef restoration
11. A nutritional supplement could improve the clinical situation of ICU patients
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)... GENOA, Italy , May 23, 2017  Hunova, the first robotic ... and trunk, has been officially launched in Genoa, Italy ... Europe and the USA . The ... launched on the market by the IIT spin-off Movendo Technology thanks to ... view the Multimedia News Release, please click: ...
(Date:4/19/2017)... 2017 The global military biometrics ... marked by the presence of several large global players. ... five major players - 3M Cogent, NEC Corporation, M2SYS ... nearly 61% of the global military biometric market in ... global military biometrics market boast global presence, which has ...
(Date:4/11/2017)... BEACH GARDENS, Fla. , April 11, 2017 ... identity management and secure authentication solutions, today announced ... contract by Intelligence Advanced Research Projects Activity (IARPA) ... for IARPA,s Thor program. "Innovation has ... onset and IARPA,s Thor program will allow us ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... , ... October 12, 2017 , ... ... today announced the three Winners and six Finalists of the 2017 Blavatnik Regional ... by the Blavatnik Family Foundation and administered by the New York Academy of ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... a United States multicenter, prospective clinical study that demonstrates the accuracy of ... capable of identifying clinically significant acute bacterial and viral respiratory tract infections ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... partners with the pharmaceutical and biotechnology industries to improve patient outcomes and quality ... Several trends in analytical testing are being attributed to new regulatory requirements for ...
(Date:10/11/2017)... N.C. (PRWEB) , ... October 11, 2017 , ... ... ARCS® Foundation President Andi Purple announced Dr. Suneel I. Sheikh, the co-founder, ... ( ASTER Labs ), Inc. has been selected for membership in ARCS ...
Breaking Biology Technology: