Navigation Links
E.coli a future source of energy?

COLLEGE STATION, Texas, Jan. 29, 2008 For most people, the name E. coli is synonymous with food poisoning and product recalls, but a professor in Texas A&M Universitys chemical engineering department envisions the bacteria as a future source of energy, helping to power our cars, homes and more.

By genetically modifying the bacteria, Thomas Wood, a professor in the Artie McFerrin Department of Chemical Engineering, has tweaked a strain of E. coli so that it produces substantial amounts of hydrogen. Specifically, Woods strain produces 140 times more hydrogen than is created in a naturally occurring process, according to an article in Microbial Biotechnology, detailing his research.

Though Wood acknowledges that there is still much work to be done before his research translates into any kind of commercial application, his initial success could prove to be a significant stepping stone on the path to the hydrogen-based economy that many believe is in this countrys future.

Renewable, clean and efficient, hydrogen is the key ingredient in fuel-cell technology, which has the potential to power everything from portable electronics to automobiles and even entire power plants. Today, most of the hydrogen produced globally is created by a process known as cracking water through which hydrogen is separated from the oxygen. But the process is expensive and requires vast amounts of energy one of the chief reasons why the technology has yet to catch on.

Woods work with E. coli could change that.

While the public may be used to hearing about the very specific strain that can cause food poisoning in humans, most strains are common and harmless, even helping their hosts by preventing other harmful bacteria from taking root in the human intestinal tract.

And the use of E. coli in science is nothing new, having been used in the production of human insulin and in the development of vaccines.

But as a potential energy source?

Thats new territory, and its being pioneered by Wood and his colleagues.

By selectively deleting six specific genes in E. colis DNA, Wood has basically transformed the bacterium into a mini hydrogen-producing factory thats powered by sugar. Scientifically speaking, Wood has enhanced the bacterias naturally occurring glucose-conversion process on a massive scale.

These bacteria have 5,000 genes that enable them to survive environmental changes, Wood explained. When we knock things out, the bacteria become less competitive. We havent given them an ability to do something. They dont gain anything here; they lose. The bacteria that were making are less competitive and less harmful because of whats been removed.

With sugar as its main power source, this strain of E. coli can now take advantage of existing and ever-expanding scientific processes aimed at producing sugar from certain crops, such as corn, Wood said.

A lot of people are working on converting something that you grow into some kind of sugar, Wood explained. We want to take that sugar and make it into hydrogen. Were going to get sugar from some crop somewhere. Were going to get some form of sugar-like molecule and use the bacteria to convert that into hydrogen.

Biological methods such as this (E. coli produce hydrogen through a fermentative process) are likely to reduce energy costs since these processes dont require extensive heating or electricity, Wood said.

One of the most difficult things about chemical engineering is how you get the product, Wood explained. In this case, its very easy because the hydrogen is a gas, and it just bubbles out of the solution. You just catch the gas as it comes out of the glass. Thats it. You have pure hydrogen.

There also are other benefits.

As might be expected, the cost of building an entirely new pipeline to transport hydrogen is a significant deterrent in the utilization of hydrogen-based fuel cell technology. In addition, there is also increased risk when transporting hydrogen.

The solution, Wood believes, is converting hydrogen on site.

The main thing we think is you can transport things like sugar, and if you spill the sugar there is not a huge catastrophe, Wood said. The idea is to make the hydrogen where you need it.

Of course, all of this is down the road. Right now, Wood remains busy in the lab, working on refining a process thats already hinted at its incredible potential. The goal, he said, is to continue to get more out of less.

Take your house, for example, Wood said. The size of the reactor that wed need today if we implemented this technology would be less than the size of a 250-gallon fuel tank found in the typical east-coast home. Im not finished with this yet, but at this point if we implemented the technology right now, you or a machine would have to shovel in about the weight of a man every day so that the reactor could provide enough hydrogen to take care of the average American home for a 24-hour period.

Were trying to make bacteria so its doesnt require 80 kilograms; it will be closer to 8 kilograms.


Contact: Thomas Wood
Texas A&M University

Related biology news :

1. Opening day for a home of the future
2. Unique fungal collection could hold key to future antibiotics
3. Climate change in the Baltic Sea basin -- past, present and future
4. Building the future -- 21st century nano tools to repair the nervous system
5. Oceans Past: A Guide to Oceans Future
6. Air quality forecasts see future in space
7. Setting a course for the future of tissue engineering
8. Methane from microbes: a fuel for the future
9. Sunbathing tree frogs future under a cloud
10. NASA technology helps predict and prevent future pandemic outbreaks
11. DOE publishes update of plan: Facilities for the Future of Science: A 20-Year Outlook
Post Your Comments:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)...   Ginkgo Bioworks , a leading organism ... today awarded as one of the World Economic ... most innovative companies. Ginkgo Bioworks is engineering biology ... world in the nutrition, health and consumer goods ... customers including Fortune 500 companies to design microbes ...
(Date:6/24/2016)... Raleigh, NC (PRWEB) , ... June 24, 2016 , ... ... find the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings ... here to read it now. , Diagnostic biomarkers are signposts in the blood, ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
Breaking Biology Technology: