Navigation Links
Duke software dramatically speeds enzyme design
Date:2/16/2009

DURHAM, N.C. -- A Duke University-led team has brought powerful software to the never-ending arms race between antibiotics and germs. Working together, computer scientists and biochemists have developed and laboratory-tested a computer program that can show experimentalists how to change the machinery that bacteria use to make natural antibiotics.

The program -- a set of computer rules known as the algorithm "K*" (pronounced K Star)-- is able to sort through all the possible shapes and changes of a key enzyme that produces a natural antibiotic called gramicidin S, said Bruce Donald, Duke's William and Sue Gross Professor of Computer Science and Biochemistry. The new technique might pave the way toward more automated redesign of old drugs to foil drug-resistance in germs.

"It really excites us that we can redesign enzymes on a computer, make them in the laboratory and have them work as planned," said Donald, who leads the extended research effort and is corresponding author of a new report to be published online the week of Feb 16 in the research journal Proceedings of the National Academy of Sciences (PNAS).

The work was funded by a grant from the National Institutes of Health.

The search for new antibiotics usually begins by directly modifying existing compounds. But his group instead predicted mutations to enzymes from an antibiotic-making microbe, using K* to search faster and cheaper for the best designs.

"It is essentially a new pathway to make novel antibiotics," Donald said. "There are many possible changes you can make to a protein, but the algorithm can test out orders of magnitude more variations than laboratory experiments alone."

Other protein design algorithms have been proposed, and some of those even attempt to account for the way key parts of real proteins move around in three dimensions. But Donald said the latest version of K* lets protein backbones and side chains wiggle more like they would in real life. Moreover, it simultaneously evaluates what he called "an entire album, or ensemble," of possible shape shifting.

"Thus it not only addresses flexibility. It embraces it," Donald said." "So we might be able to quickly discover things that would take a very long time through purely experimental techniques. It should, in principle, be possible to redesign any enzyme simply by inputting the protein's shape into the algorithm and telling it what you want it to do."

The new report is the latest milestone in a nearly 10-year effort to develop reliable enzyme design algorithms, Donald said. In the process, his group has had a long collaboration with Amy Anderson of the University of Connecticut to biochemically test the algorithm's accuracy using the Gramicidin S Synthetase enzyme system, which produces the natural antibiotic in Bacillus brevis bacteria.

In the new PNAS report, Ivelin Georgiev, Donald's computer science graduate student who is one of K*'s designers, used the latest version of the algorithm to redesign the first step in the biochemical assembly line needed to make the antibiotic.

"Redesigning that first step is a big achievement," Donald said. "We are now beginning work on redesigning the half dozen subsequent steps downstream."

The algorithm includes a "dead-end elimination" feature that can run though all possible chemical interactions and flexible molecular architectures to weed out scenarios that cannot work. Calculating just one redesign might take up to a week in the 230-processor computer cluster housed in Donald's lab, he said.

After all the calculations were completed, biochemist Cheng-Yu Chen, another of Donald's graduate students, confirmed the algorithm's predicted designs in Donald's biochemical wet lab, using bacteria to synthesize some "quite big and tricky proteins," Donald said. "It was not at all trivial to do that, and testing the functions of each protein was even trickier."

Georgiev and Chen were both first authors of the PNAS report, and the University of Connecticut's Anderson was another co-author. The K* algorithm software is available as open source code for other researchers to evaluate and use.

"While gramicidin S is probably not a really useful antibiotic against emerging infectious diseases, it's a great model system for studying how such enzymes work, because we know a lot about its 3-D shape," Donald said. "It should, in principle, be possible to redesign any enzyme." That might include revamping the machinery that makes other workhorse enzymes in gramicidin's family, such as penicillin and vancomycin.

Vancomycin is considered an antibiotic of last resort for patients infected by methicillin-resistant germs. And Donald's group has now begun to study the proteins involved in its synthesis inside the bacterium Amycolatopsis orientalis. "We believe K* can be used to redesign them too," he said.


'/>"/>

Contact: Monte Basgall
monte.basgall@duke.edu
919-681-8057
Duke University
Source:Eurekalert

Related biology news :

1. Radiant Systems Selects BIO-key(R) Biometric Software for POS Solution
2. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
3. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
4. Radiant Systems Selects BIO-key(R) Biometric Software for POS Solution
5. Aware, Inc. Introduces Biometrics Software for Tenprint Autocapture
6. CIC Again Named to Software Magazines Annual Prestigious Software 500 List
7. Titanium Group Signs Letter of Intent to Acquire Multimilion Dollar Medical Software Company and Its Existing Sales Network
8. Titanium Group Signs Letter of Intent to Acquire Multimilion Dollar Medical Software Company and Its Existing Sales Network
9. Software Techniques Inc. Selects M2SYS Fingerprint Software to Meet Continuous Growth and Demand for Desktop Biometric Time & Attendance Solutions
10. LOGICARE Selects M2SYS Biometric Fingerprint Software to Ensure Patient Privacy and Protect Confidential Information
11. M2SYS Introduces Revolutionary Biometric Artificial Intelligence Technology to Significantly Reduce Fingerprint Software False Reject Rates
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology ... LCD display is the latest premium product recently added to the range of products ... ... ... 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: