Navigation Links
Duke engineers make strides toward artificial cartilage
Date:12/13/2013

DURHAM, N.C. -- A Duke research team has developed a better recipe for synthetic replacement cartilage in joints.

Combining two innovative technologies they each helped develop, lead authors Farshid Guilak, a professor of orthopedic surgery and biomedical engineering, and Xuanhe Zhao, assistant professor of mechanical engineering and materials science, found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Their results appear Dec. 17 in the journal Advanced Functional Materials.

Articular cartilage is the tissue on the ends of bones where they meet at joints in the body including in the knees, shoulders and hips. It can erode over time or be damaged by injury or overuse, causing pain and lack of mobility. While replacing the tissue could bring relief to millions, replicating the properties of native cartilage -- which is strong and load-bearing, yet smooth and cushiony -- has proven a challenge.

In 2007 Guilak and his team developed a three-dimensional fabric "scaffold" into which stem cells could be injected and successfully "grown" into articular cartilage tissue. Constructed of minuscule woven fibers, each of the scaffold's seven layers is about as thick as a human hair. The finished product is about 1 millimeter thick.

Since then, the challenge has been to develop the right medium to fill the empty spaces of the scaffold -- one that can sustain compressive loads, provide a lubricating surface and potentially support the growth of stem cells on the scaffold. Materials supple enough to simulate native cartilage have been too squishy and fragile to grow in a joint and withstand loading. "Think Jell-O," says Guilak. Stronger substances, on the other hand, haven't been smooth and flexible enough.

That's where the partnership with Zhao comes in.

Zhao proposed a theory for the design of durable hydrogels (water-based polymer gels) and in 2012 collaborated with a team from Harvard University to develop an exceptionally strong yet pliable interpenetrating-network hydrogel.

"It's extremely tough, flexible and formable, yet highly lubricating," Zhao says. "It has all the mechanical properties of native cartilage and can withstand wear and tear without fracturing."

He and Guilak began working together to integrate the hydrogel into the fabric of the 3-D woven scaffolds in a process Zhao compares to pouring concrete over a steel framework.

In their experiments, the researchers compared the resulting composite material to other combinations of Guilak's scaffolding embedded with previously studied hydrogels. The tests showed that Zhao's invention was tougher than the competition with a lower coefficient of friction. And though the resulting material did not quite meet the standards of natural cartilage, it easily outperformed all other known potential artificial replacements across the board, including the hydrogel and scaffolding by themselves.

"From a mechanical standpoint, this technology remedies the issues that other types of synthetic cartilage have had," says Zhao, founder of Duke's Soft Active Materials (SAMs) Laboratory. "It's a very promising candidate for artificial cartilage in the future."

The team's next step will likely be to implant small patches of the synthetic cartilage in animal models, according to Guilak and Zhao.


'/>"/>

Contact: Ken Kingery
ken.kingery@duke.edu
919-660-8414
Duke University
Source:Eurekalert  

Related biology news :

1. Queens is UK leader for female scientists and engineers
2. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
3. When cells hit the wall: UCLA engineers put the squeeze on cells to diagnose disease
4. Engineers use droplet microfluidics to create glucose-sensing microbeads
5. Civil engineers find savings where the rubber meets the road
6. BYU engineers conceive disc replacement to treat chronic low back pain
7. Medusa reimagined: Caltech-led team reverse engineers a jellyfish with the ability to swim
8. WHOI scientists/engineers partner with companies to market revolutionary new instruments
9. Nanoengineers can print 3D microstructures in mere seconds
10. Maintaining Earths sustainability: Scientists, engineers, educators take coordinated approach
11. Iowa State computer, electrical engineers working to help biologists cope with big data
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Duke engineers make strides toward artificial cartilage
(Date:3/15/2016)... , March 15, 2016 ... report published by Transparency Market Research "Digital Door Lock Systems ... Forecast 2015 - 2023," the global digital door lock systems ... Mn in 2014 and is forecast to grow at a ... of micro, small and medium enterprises (MSMEs) across the world ...
(Date:3/11/2016)... Germany , March 11, 2016 http://www.apimages.com ... - Cross reference: Picture is available at AP Images ( http://www.apimages.com ... from DERMALOG will be used to produce the new refugee identity ... other biometric innovations, at CeBIT in Hanover ... scanner from DERMALOG will be used to produce the new refugee ...
(Date:3/9/2016)... NEW YORK , March 9, 2016 ... current and future states of the RNA Sequencing (RNA ... in segments such as instruments, tools and reagents, data ... Analyze various segments of the RNA-Sequencing market such ... RNA-Sequencing services Identify the main factors affecting each segment ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... ... Doctors in Italy, Japan, the UK and the US have reached some surprising ... its link to malignant mesothelioma. Surviving Mesothelioma has just posted the details of their ... , The studies analyzed for the new report included more than 3,447 cancer patients. ...
(Date:5/26/2016)... NEW YORK , May 26, 2016 ... announced today that it will be a featured presenter at ... 2016 in New York City at ... Denis Corin , Q BioMed Inc. CEO, is scheduled ... presentation will cover the company,s business strategy, recent developments and ...
(Date:5/25/2016)... ... May 25, 2016 , ... Lajollacooks4u has become a rising hotspot ... rated one of its top attractions. Fortune 500 companies, such as Illumina, Hewlett-Packard, ... unique and intimate team-building experience. , Each event kicks off with an olive oil ...
(Date:5/25/2016)... , ... May 25, 2016 , ... Scientists at the ... options being tried for mesothelioma may be hampering the research that could lead to ... Click here to read it now. , The team evaluated 98 ...
Breaking Biology Technology: