Navigation Links
Duke engineers make strides toward artificial cartilage

DURHAM, N.C. -- A Duke research team has developed a better recipe for synthetic replacement cartilage in joints.

Combining two innovative technologies they each helped develop, lead authors Farshid Guilak, a professor of orthopedic surgery and biomedical engineering, and Xuanhe Zhao, assistant professor of mechanical engineering and materials science, found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Their results appear Dec. 17 in the journal Advanced Functional Materials.

Articular cartilage is the tissue on the ends of bones where they meet at joints in the body including in the knees, shoulders and hips. It can erode over time or be damaged by injury or overuse, causing pain and lack of mobility. While replacing the tissue could bring relief to millions, replicating the properties of native cartilage -- which is strong and load-bearing, yet smooth and cushiony -- has proven a challenge.

In 2007 Guilak and his team developed a three-dimensional fabric "scaffold" into which stem cells could be injected and successfully "grown" into articular cartilage tissue. Constructed of minuscule woven fibers, each of the scaffold's seven layers is about as thick as a human hair. The finished product is about 1 millimeter thick.

Since then, the challenge has been to develop the right medium to fill the empty spaces of the scaffold -- one that can sustain compressive loads, provide a lubricating surface and potentially support the growth of stem cells on the scaffold. Materials supple enough to simulate native cartilage have been too squishy and fragile to grow in a joint and withstand loading. "Think Jell-O," says Guilak. Stronger substances, on the other hand, haven't been smooth and flexible enough.

That's where the partnership with Zhao comes in.

Zhao proposed a theory for the design of durable hydrogels (water-based polymer gels) and in 2012 collaborated with a team from Harvard University to develop an exceptionally strong yet pliable interpenetrating-network hydrogel.

"It's extremely tough, flexible and formable, yet highly lubricating," Zhao says. "It has all the mechanical properties of native cartilage and can withstand wear and tear without fracturing."

He and Guilak began working together to integrate the hydrogel into the fabric of the 3-D woven scaffolds in a process Zhao compares to pouring concrete over a steel framework.

In their experiments, the researchers compared the resulting composite material to other combinations of Guilak's scaffolding embedded with previously studied hydrogels. The tests showed that Zhao's invention was tougher than the competition with a lower coefficient of friction. And though the resulting material did not quite meet the standards of natural cartilage, it easily outperformed all other known potential artificial replacements across the board, including the hydrogel and scaffolding by themselves.

"From a mechanical standpoint, this technology remedies the issues that other types of synthetic cartilage have had," says Zhao, founder of Duke's Soft Active Materials (SAMs) Laboratory. "It's a very promising candidate for artificial cartilage in the future."

The team's next step will likely be to implant small patches of the synthetic cartilage in animal models, according to Guilak and Zhao.


Contact: Ken Kingery
Duke University

Related biology news :

1. Queens is UK leader for female scientists and engineers
2. Chemical engineers at UMass Amherst find high-yield method of making xylene from biomass
3. When cells hit the wall: UCLA engineers put the squeeze on cells to diagnose disease
4. Engineers use droplet microfluidics to create glucose-sensing microbeads
5. Civil engineers find savings where the rubber meets the road
6. BYU engineers conceive disc replacement to treat chronic low back pain
7. Medusa reimagined: Caltech-led team reverse engineers a jellyfish with the ability to swim
8. WHOI scientists/engineers partner with companies to market revolutionary new instruments
9. Nanoengineers can print 3D microstructures in mere seconds
10. Maintaining Earths sustainability: Scientists, engineers, educators take coordinated approach
11. Iowa State computer, electrical engineers working to help biologists cope with big data
Post Your Comments:
Related Image:
Duke engineers make strides toward artificial cartilage
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: ) , ... but it also plays a fundamental part in enabling and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... launch of the Supplyframe Design Lab . Located in Pasadena, Calif., the ... future of how hardware projects are designed, built and brought to market. , ...
(Date:6/23/2016)... Calif. , June 23, 2016  Blueprint Bio, ... biological discoveries to the medical community, has closed its ... Matthew Nunez . "We have received ... with the capital we need to meet our current ... essentially provide us the runway to complete validation on ...
Breaking Biology Technology: