Navigation Links
Duke awarded up to $43 million to develop test for dirty bomb/radiation exposure
Date:1/20/2010

DURHAM, N.C. Duke University has received a $3.7 million contract from the Biomedical Advanced Research and Development Authority (BARDA) to develop a rapid and accurate genomic-based diagnostic test that can determine if a person has been exposed to radiation from a dirty bomb or nuclear attack. In the event that all option years are exercised by the government, Duke University could receive up to $43.6 million from the contract.

"Since 9/11, there has been national concern about the possibility of a terrorist attack in the U.S. involving radiological or nuclear materials. Such an attack could kill or injure hundreds of thousands of people," says John Chute, M.D., associate professor of medicine at Duke and principal investigator of the project. "The problem is that right now, we don't have any way to rapidly screen thousands of people to determine their level of radiation exposure. Many people who suffer radiation injury can recover and survive if they are promptly and properly treated."

BARDA is part of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services. It manages Project BioShield and the Public Health Emergency Medical Countermeasures Enterprise, two organizations charged with the development of medical response to pandemic disease and countermeasures for chemical, biological and nuclear attacks.

The award builds upon Chute's previous collaborations at Duke with Joseph Nevins, Ph.D. and Nelson Chao, M.D. that identified a set of 25 genes in human peripheral blood that are activated in response to radiation. Chute says that radiation exposure causes a characteristic pattern of expression in those 25 genes and this "signature" can diagnose radiation status with over 90 percent accuracy. Chute's earlier work was supported by a $25 million grant from the National Institutes of Allergy and Infectious Diseases that established the Duke Center for Medical Countermeasures Against Radiation, now in its fifth year of funding.

The new contract calls for Chute and his team at Duke to further validate the accuracy of the gene profile in animal and human testing. Collaborators at DxTerity Diagnostics, a biotechnology company based in California, will utilize the Duke gene panel to develop a rapid gene expression test while colleagues at the University of Arizona and Invetech Corporation will design and develop the instrument in which the assay will be performed. The end product will be a portable, 30-minute test for radiation injury that can be used to triage thousands of individuals in a short time following a radiological or nuclear attack.

"The Homeland Security Council document, 'Planning Guidance for Response to a Nuclear Detonation' indicates that a 10-kiloton improvised nuclear device would likely be lethal to individuals within about a half-mile radius of the blast," says Chute. "Outside this zone, however, thousands of individuals would be exposed to high-dose radiation but may be able to survive with prompt medical intervention. Further from the blast area, there would be additional thousands who have suffered little or no exposure, and may not need medical attention, but who will still be seeking it."

Chute says that such a scenario will require early and accurate triage of mass casualties to provide an effective health care response. "Imagine a blast zone with a ring of triage stations at the perimeter. We believe that using our diagnostic assay in such points would allow us to screen tens of thousands of individuals in a 24-hour period and to distinguish true radiation victims from the uninjured," says Chute.

Chute says the assay will involve a single collection of only a few drops of blood that will be analyzed in a fully automated instrument with each result provided in about 30 minutes. That dramatically shortens the time it currently takes to analyze large numbers of genes, a process that takes several days and requires large equipment. Researchers hope to have a prototype ready for demonstration by 2012.


'/>"/>

Contact: Michelle Gailiun
michelle.gailiun@duke.edu
919-660-1306
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Pancreatic Cancer Action Network-AACR Pathway to Leadership Grant awarded to Johns Hopkins Early Career investigator
2. Cylex(TM) Awarded New CPT Code For Its ImmuKnow(R) Assay
3. LSUHSC awarded multi-million dollar grant to reduce pneumonia
4. K-State plant pathology professor awarded international professorship for Latin America
5. Penn, Georgia collaboration awarded $14.6 million to expand pathogen database
6. Air Force Center of Excellence awarded in nanostructures and improved cognition
7. Stanford researchers awarded $6.27 million to study energy efficiency and human behavior
8. University of Miami facility awarded prestigious LEED Green Building Certification
9. Professor Suzanne Cory awarded 2009 Pearl Meister Greengard Prize
10. UNC awarded $6.2 million renewal grant by NIH Rare Diseases Research Network
11. VBI awarded $27 million from NIH to support infectious disease research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
(Date:5/20/2016)... May 20, 2016  VoiceIt is excited to ... VoicePass. By working together, VoiceIt and ... VoiceIt and VoicePass take slightly different approaches to ... both security and usability. ... this new partnership. "This marketing and ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
Breaking Biology News(10 mins):
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
(Date:6/23/2016)... 2016  Blueprint Bio, a company dedicated to identifying, ... community, has closed its Series A funding round, according ... "We have received a commitment from Forentis Fund ... to meet our current goals," stated Matthew Nunez ... to complete validation on the current projects in our ...
Breaking Biology Technology: