Navigation Links
Duke Medicine news -- Genome sequencing of Burkitt Lymphoma reveals unique mutation
Date:11/12/2012

DURHAM, N.C. In the first broad genetic landscape mapped of a Burkitt lymphoma tumor, scientists at Duke Medicine and their collaborators identified 70 mutations, including several that had not previously been associated with cancer and a new one that was unique to the disease.

Findings from the genetic sequencing of Burkitt lymphoma, an aggressive form of lymphoma, could be used to develop new drugs or aim existing therapies at mutations known to be susceptible. The researchers published their findings online Sunday, Nov. 11, 2012, in the journal Nature Genetics.

"This study lays out the most common genetic alterations in the disease, and allows us to understand the biology of the disease so we can design better therapies," said Sandeep S. Dave, M.D., MBA, MS, associate professor at Duke and senior author of the study.

Dave and colleagues sequenced the first complete Burkitt lymphoma genome, plus the genes from 59 additional Burkitt cases and 94 diffuse large B cell lymphomas, which share many of the same characteristics of Burkitt lymphoma. Similarities between the malignancies can often lead to mistaken diagnoses and failed treatments.

The researchers reported striking differences in the gene mutation patterns of Burkitt lymphomas vs. the diffuse large B cell lymphomas.

"It's important that doctors make the right diagnosis for Burkitt lymphoma, which can be cured with the correct therapies," Dave said. "But if misdiagnosed and given the standard chemotherapy regimes for diffuse large B cell lymphomas, Burkitt lymphoma patients invariably relapse."

The analysis identified 70 genes that were frequently mutated in the Burkitt lymphomas, including a number of genes that were identified in cancer for the first time. One of the newly identified gene mutations, ID3, appeared in 34 percent of the Burkitt cases, but was not evident in any of the diffuse large B cell lymphomas. The mutation has a silencing effect on a gene that suppresses cell growth, enabling cells to multiply.

Dave said this alteration alone may not cause cancer, but when it occurs along with the MYC gene mutations that are common in Burkitt lymphoma and other malignancies, it works like an accelerant to fuel tumor growth. That finding could prove helpful for developing a new drug to function like a normal ID3 gene and suppress cancer cell proliferation in lymphomas as well as numerous other cancers.

"If we can find a way to mimic ID3, restoring the function of the gene to slow the growth of tumors, this could provide a new treatment approach," Dave said. "We have experiments that suggest this is the case, but much more research is needed. This work provides a starting point."


'/>"/>

Contact: Sarah Avery
sarah.avery@duke.edu
919-660-1306
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Privately owned genetic databases may hinder diagnosis and bar the way to the arrival of personalized medicine
2. AVT Develops Biometrically Secure Medicine Storage and Retrieval System for Medbox RX
3. Discovery of reprogramming signature may help further stem cell-based regenerative medicine research
4. BGI Tech develops whole exome sequencing analysis of FFPE DNA samples to boost biomedicine
5. How to Differentiate Your Pharmaceutical Product in the Personalized Medicine Segment
6. Annals of Internal Medicine tip sheet for Sept. 4, 2012
7. Prestigious Royal Society of Tropical Medicine and Hygiene journals join Oxford University Press
8. MDA supports Duchenne muscular dystrophy research by University of Nevada School of Medicine
9. Creating a future of personalized medicine: U-M forms joint venture for DNA diagnostics
10. Nature as a source of new medicines subject of ICNPR in NYC
11. Zebrafish -- the stars of biomedicine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/14/2016)... 14, 2016  xG Technology, Inc. ("xG" or the ... wireless communications for use in challenging operating environments, announced ... 2016. Management will hold a conference call to discuss ... Eastern Time (details below). Key Recent Accomplishments ... million binding agreement to acquire Vislink Communication Systems. The ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... and BEIJING , Nov. 30, 2016 ... provider of genomic services and solutions with cutting edge ... it has completed a USD $75 Million [515 Million ... Ltd.,s CMB International Capital Management ( Shenzhen ... Co., Ltd. ("SDIC Innovation") and Shanghai Sigma Square Investment ...
(Date:11/30/2016)... , Nov. 30, 2016   Merck , ... it has entered into a set of agreements with ... for Merck,s collection of genetic reagents such as CRISPR ... Evotec,s screening expertise offers an accelerated pathway to explore ... starts with the identification of new targets, a process ...
(Date:11/30/2016)... ... November 30, 2016 , ... T3D Therapeutics, Inc., a clinical ... treatment for Alzheimer’s disease (AD), today announced that CEO, John Didsbury, will be ... T3D-959 in mild to moderate Alzheimer’s patients at CTAD 2016. Preliminary results of ...
(Date:11/30/2016)... Toronto, ON (PRWEB) , ... November 30, 2016 ... ... focused on discovery and development of precision treatments for neurodegenerative diseases, today announced ... disease (AD) (announced on November 3, 2016) blocked propagation of toxic, prion-like forms ...
Breaking Biology Technology: