Navigation Links
Drought tolerance in crops: Shutting down the plant's growth inhibition under mild stress
Date:5/11/2011

Gent - VIB/UGent researchers have unveiled a mechanism that can be used to develop crop varieties resistant to mild droughts. For years, improving drought tolerance has been a major aim of academic and industrial research, thereby focusing on effects of extreme drought stress. However, translating this research to the field has proven to be problematic. In a set of papers in Nature Biotechnology and the Plant Cell, the team of Dirk Inz at the VIB Department of Plant Systems Biology, UGent now shows that the focus should be on mild drought stress instead. It turns out that under non-lethal stress conditions plants inhibit growth more than absolutely necessary, opening new opportunities for yield improvement.

"By applying this knowledge to the selection of new crop varieties, unnecessary yield losses through drought stress can be avoided, resulting in higher productivity," Dirk Inz from VIB-UGent said.

Producing more food with less water

Only recently the World Bank warned that the world is facing a devastating food price crisis, with yield losses due to weather events being named one of the components of this complex problem. Producing more food on limited arable land, considering the increasing scarcity of water and unpredictability of the weather due to global warming, will be one of the major challenges for this century. One way to increase crop productivity is targeting drought stress, which is currently the main factor decreasing actual yields. Research in this area however so far largely failed to result in crops that perform better in drought conditions.

Plant response differs between severe and mild drought stress

Much of this research has focused on improved plant survival under very severe drought. However, as shown by Aleksandra Skirycz and Korneel Vandenbroucke, plants that are more likely to survive these extreme conditions do not grow better under more mild drought conditions. This is important as in the field drought rarely is severe enough to kill plants, but rather affects their growth. The paper, published in Nature Biotechnology, also shows that plants actively choose to grow slower when water gets limiting, although they have enough resources to keep growing.

Plant hormone ethylene plays major role in stress response

In a follow-up study early leaf growth, entirely driven by cell division, was chosen as a model to unravel the mechanisms underlying this active growth inhibition. Aleksandra Skirycz and Hannes Claeys showed that the plant hormone ethylene shuts down leaf growth very fast after the plant senses limited water availability. If the stress is only temporary, growth can resume nonetheless. This research opens up new approaches to develop crop varieties that keep on growing during mild and temporary spells of drought that occur in the field, avoiding unnecessary yield losses and thus resulting in higher crop productivity.


'/>"/>

Contact: Joris Gansemans
info@vib.be
329-244-6611
VIB (the Flanders Institute for Biotechnology)
Source:Eurekalert

Related biology news :

1. New technique enables assessment of drought performance
2. Sequence matters in droughts and floods
3. Genome of a heat and drought resistant cereal plant analyzed
4. Statement by Sandy Andelman, co-author of Drought sensitivity of the Amazon Rainforest
5. Amazon carbon sink threatened by drought
6. International team finds key gene that allows plants to survive drought
7. Synthetic chemical offers solution for crops facing drought
8. Australias climate: Drought and flooding in annual rings of tropical trees
9. MU researchers create drought conditions to unearth solutions
10. National Science Foundation funds systems biology study of crop drought responses
11. National report shines light on lupus 50-year treatment drought
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced ... will feature emerging and evolving technology through ... Innovation Summits will run alongside the expo portion of ... sessions, panels and demonstrations focused on trending topics within ... advanced design and manufacturing event will take place June ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and recently formed ... entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The ... gene editing across all applications. , Under the terms of the agreement, Pioneer ...
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded ... of its newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for ... fibrin sealants, synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates ...
(Date:10/12/2017)... , ... October 12, 2017 ... ... has launched Rosalind™, the first-ever genomics analysis platform specifically designed for life ... Named in honor of pioneering researcher Rosalind Franklin, who made a major ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity ... for performing systematic gain-of-function studies. , This complement to loss-of-function studies, such ...
Breaking Biology Technology: