Navigation Links
Drexel researchers looking inside vessels to understand blood's ebb and flow
Date:9/4/2013

Researchers have known for some time that the blood vessels that transport blood to and from tissues and organs in the body are more than just bodily pipelines. Arterioles and capillaries, the small vessels, actually play a key role in regulating the flow of the blood they're carrying. Biomedical engineers at Drexel University, who study cardiovascular function, are creating a mathematical model that explains just how they do it.

The team, which includes Drs. Dov Jaron, Kenneth Barbee and Donald Buerk from Drexel's School of Biomedical Engineering, Science and Health Systems, will look specifically at mechanisms that govern the production of nitric oxide in the circulatory system. Nitric oxide is a chemical produced by endothelial cells that line the inner walls of blood vessels, which regulates blood pressure and flow by dilating the vessels. It also plays a role in the immune system's response to injuries and infections.

"This research is significant since the mechanisms that control the production of nitric oxide, and thereby control blood flow, are not fully known," Jaron said. "NIH is making it a priority to study this, since defects in nitric oxide in blood and tissues are known to lead to many diseases."

The National Heart, Lung and Blood Institute of The National Institutes of Health has pledged more than $3.3 million over five years to the Drexel team in hopes that its model could eventually play a role in combating one of the nation's leading killers: heart disease.

"This team is uniquely qualified to perform this research because it combines expertise in mathematical modeling and experiments," Barbee said. "We have identified novel mechanisms involved in the regulation of nitric oxide production that are not apparent using standard experimental approaches alone."

Using a flow chamber, invented at Drexel specifically for this type of research, the team will examine nitric oxide production in endothelial cells grown in the lab. While introducing chemical catalysts and inhibitors the team will be able to track in real time- how nitric oxide is produced. Adding this data on location and time factors involved in the production of nitric oxide will give Drexel's model another layer of depth and accuracy.

"In addition to the flow chamber technology, we also have the unique capability for using sensitive microelectrodes to measure nitric oxide in the microcirculation," Buerk said.

One thing that scientists already know about nitric oxide in the body is that the presence of high levels of cholesterol can block its production and thus contribute to the development of vascular disease. Drexel's model, which will be open-source, could help researchers in the field gain greater understanding of vascular function and test hypotheses about the biological pathways leading to the production of nitric oxide.


'/>"/>

Contact: Britt Faulstick
bef29@drexel.edu
215-895-2617
Drexel University
Source:Eurekalert

Related biology news :

1. Making memories: Drexel researchers explore the anatomy of recollection
2. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
3. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
4. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
5. UNH researchers find African farmers need better climate change data to improve farming practices
6. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
7. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
8. Researchers print live cells with a standard inkjet printer
9. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
10. Researchers reveal how a single gene mutation leads to uncontrolled obesity
11. Researchers discover novel therapy for Crohns disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... The Department of Transport Management (DOTM) of ... project, for the , Supply and Delivery of ... Infrastructure , to Decatur , ... Management Solutions. Numerous renowned international vendors participated in the tendering ... selected for the most compliant and innovative solution. The contract ...
(Date:6/1/2016)... 2016 Favorable Government Initiatives Coupled ... Criminal Identification to Boost Global Biometrics System Market Through ... Research report, " Global Biometrics Market By Type, ... Opportunities, 2011 - 2021", the global biometrics market is ... account of growing security concerns across various end use ...
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the ... major shareholders, Clean Technology Fund I, LP and Clean ... based venture capital funds which together hold approximately ... fully diluted, as converted basis), that they have entered ... equity holdings in Biorem to TUS Holdings Co. Ltd. ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... June 24, 2016 Epic Sciences unveiled ... cancers susceptible to PARP inhibitors by targeting homologous ... (CTCs). The new test has already been incorporated ... multiple cancer types. Over 230 clinical ... response pathways, including PARP, ATM, ATR, DNA-PK and ...
Breaking Biology Technology: