Navigation Links
Dormant microbes promote diversity, serve environment
Date:3/22/2010

The ability of microbes, tiny organisms that do big jobs in our environment, to go dormant not only can save them from death and possible extinction but may also play a key role in promoting biodiversity and ecosystem stability.

In a paper published this week in the Proceedings of National Academy of Sciences, Michigan State University's Jay Lennon and Stuart Jones described how they used a mathematical model and molecular tools to study how dormancy affects the biodiversity of natural microbial communities, especially in lakes.

Dormancy is a reversible state of low metabolic activity that an organism enters when it encounters stressful conditions, such as starvation or cold temperatures. The strategy is common among plants and animals, but is also used by some microbes, most notably bacteria that cause anthrax, tuberculosis and cholera. This new study shows that dormancy is not just important for disease-causing microbes, however.

"Microbes are the most abundant and diverse organisms on earth; they carry out essential ecosystem services" said Lennon, an assistant professor of microbiology and molecular genetics who is also affiliated with the W.K. Kellogg Biological Station. "Among these services are contaminant degradation, carbon sequestration and various processes that affect plant productivity."

Scientists have recently cataloged thousands of microbial species in soil and ocean samples. These extremely high levels of biodiversity may help ensure the stability of ecosystem processes in the face of environmental change. It is not clear, however, why microbial communities are so diverse. "We think," Lennon said. "that dormancy is a critical factor that maintains microbial diversity."

Gathering samples from Michigan lakes, Lennon and Stuart examined two very different groups of microbes bacteria and eukaryotes, which are primarily algae. With the molecular data and models they developed, the researchers found that microbial seed banks seeds that have been dormant in the lakes are important, but, in Lennon's words, "not all microbes are the same."

"Bacteria appear to rely on dormancy more so than eukaryotic microbes," he said. "When faced with unfavorable conditions bacteria may simply go to sleep. There are risks to this strategy but it pays off if a microbe wakes up before dying and conditions are favorable once it is resuscitated. Essentially, a dormant organism is able to escape the bad times."

On the other hand, the vast majority of algae and related species were metabolically active. "In lakes, dormancy was less important for eukaryotic microbes." Because they are larger than bacteria, algae sink faster and may not wake up before it is too late. These differences in dormancy may be important for predicting how populations respond to disturbance and environmental change.

One important discovery was that environmental conditions or "cues" seem to determine the microbes' degree of dormancy. Lennon said they found that dormancy was less common in high productivity lakes. Lake productivity tends to be controlled by nitrogen and phosphorus concentrations, which can be linked to climate change and land use activity.

Dormancy in microbes has been studied for more than a century, Lennon said, especially as it relates to disease. For example, tuberculosis can lay dormant in a human for years before becoming reactivated. Dormancy also appears to be important for microbes in the environment, and may help us understand what regulates the tremendous amount of microbial diversity that is found in virtually all natural ecosystems.


'/>"/>

Contact: Tom Oswald
tom.oswald@ur.msu.edu
517-432-0920
Michigan State University
Source:Eurekalert

Related biology news :

1. Waking up dormant HIV
2. Summer-dormant tall fescue grass shows promise for pasture improvements
3. Microbes produce fuels directly from biomass
4. Hot microbes cause groundwater cleanup rethink
5. Marine microbes creating green waves in industry
6. Marine microbes creating green waves in industry
7. Microbes and their hosts -- exploring the complexity of symbiosis in DNA and cell biology
8. Methane-eating microbes can use iron and manganese oxides to breathe
9. Plant protein doorkeepers block invading microbes, study finds
10. Plant protein doorkeepers block invading microbes, study finds
11. Antibiotics take toll on beneficial microbes in gut
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)...  Hunova, the first robotic gym for the rehabilitation and functional motor ... Genoa, Italy . The first 30 robots will be ... USA . The technology was developed and patented at the ... spin-off Movendo Technology thanks to a 10 million euro investment from entrepreneur ... ...
(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
Breaking Biology News(10 mins):
(Date:7/25/2017)... ... , ... Fiberstar, Inc ., a global market leader in clean label ... citrus fiber is used to improve tomato-based food products by replacing starches and gums ... Today, more than ever, consumers connect ingredients to the foods they eat by reading ...
(Date:7/24/2017)... 24, 2017 Intralytix, Inc. announced that it ... a French family group. This investment marks the beginning ... and commercialize bacteriophage-based products, for various benefits in human ... As a global ... and markets innovative solutions for baking, food taste & ...
(Date:7/20/2017)... Rochester, MN (PRWEB) , ... July 20, 2017 ... ... , an online directory of leading radiology and imaging centers around the U.S. ... non-invasive and highly accurate alternative to needle biopsy for staging liver ...
(Date:7/20/2017)... Massachusetts (PRWEB) , ... July 20, 2017 , ... ... a multi-part seminar on digital pathology and artificial intelligence Tuesday, July 25, during ... Dr. Alexander Baras from Johns Hopkins Medicine. , Baras, Associate Director of ...
Breaking Biology Technology: