Navigation Links
Distinguishing single cells with nothing but light

Researchers at the University of Rochester have developed a novel optical technique that permits rapid analysis of single human immune cells using only light.

Availability of such a technique means that immunologists and other cellular researchers may soon be able to observe the responses of individual cells to various stimuli, rather than relying on aggregate statistical data from large cell populations. Until now scientists have not had a non-invasive way to see how human cells, like T cells or cancer cells, activate individually and evolve over time.

As reported today in a special biomedical issue of Applied Optics, this is the first time clear differences between two types of immune cells have been seen using a microscopy system that gathers chemical and structural information by combining two previously distinct optical techniques, according to senior author Andrew Berger, associate professor of optics at the University of Rochester.

Berger and his graduate student Zachary Smith are the first to integrate Raman and angular-scattering microscopy into a single system, which they call IRAM.

"Conceptually it's pretty straightforwardyou shine a specified wavelength of light onto your sample and you get back a large number of peaks spread out like a rainbow," says Berger. "The peaks tell you how the molecules you're studying vibrate and together the vibrations give you the chemical information."

According to Smith, "Raman spectroscopy is essentially an easy way to get a fingerprint from the molecule."

Structural information is simultaneously gathered by examining the angles at which light incident on a sample is bumped off its original course.

Together the chemical and structural information provide the data needed to classify and distinguish between two different, single cells. Berger and Smith verified this by looking at single granulocytesa type of white blood celland peripheral blood monocytes.

"One of the big plusses with our system is that it's a non-labeling approach for studying living cells," says Berger.

IRAM differs from most standard procedures where markers are inserted in, or attached to cells. If a marker sticks to one cell, and not the other, you can tell which cell is which on the basis of specific binding properties.

While markers are often adequate for studying cells at a single point in time, monitoring a cell over time as it changes is more problematic, since the marker can affect dynamic cell activities, like membrane transport. And internal markers actually involve punching holes in the membrane, damaging or killing the cell in the process.

"Our method uses only light to effectively reach inside the cell," says Smith. "We can classify internal differences in the cell without opening it up, attaching anything to it, or preparing it in any special way. It's really just flipping a switch."

Despite being relatively intense, the light used with IRAM does not harm or inhibit normal cell functionality. This is because the wavelength of the light can be precisely calibrated to minimize absorption by the cells. The near-infrared spectrum has proven particularly optimal for allowing almost all of the light to pass through the cells.

With the availability of a technique where making a measurement does not alter cellular activity, scientists will be able to better observe individual cell responses to stimuli, which Berger and Smith suspect may have far reaching implications for current understandings of cell activation and development.

"In the cell sensing community it's currently a pretty hot area to figure out how to analyze activation responses on a cell-by-cell basis," says Berger. "If individual information was available on top of existing ensemble data, you'd have a richer understanding of immune responses."

Perfecting IRAM has been a stepping stone process so far. Now that individual cells can be distinguished, Berger and Smith are actively investigating activation processes more explicitly. Preliminary IRAM experiments conducted on T cells have revealed perceivable differences between the initial resting state of a T cell and its state following an encounter with an invader.

The next step will be to use IRAM to gather data continuously so that scientists can effectively watch single cells undergo activation and react to stimuli in real-time. The ability to know not only about the aggregate responses of cells, but also be able to observe the earliest changes among individual cells, may be of profound importance in time-critical areas, such as cancer research and immunology.

"There's an obvious desire among cell researchers to be able to deliver a controlled stimulant to a single cell and then study its response over time," says Berger. "The clinical insights that might arise are currently in the realm of speculation. We won't know until we can do itand now we can."


Contact: Evan Wendel
University of Rochester

Related biology news :

1. Distinguishing between 2 birds of a feather
2. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
3. Single-largest biodiversity survey says primary rainforest is irreplaceable
4. New technique captures chemical reactions in a single living cell at unprecedented resolution
5. Gene study supports single main migration across Bering Strait
6. Baumann lab identifies elusive telomere RNA subunit in single cell model
7. Ebola virus disarmed by excising a single gene
8. Blue-eyed humans have a single, common ancestor
9. Rice scientists make breakthrough in single-molecule sensing
10. Single-celled bacterium works 24-7
11. RevGenUK, a single-stop shop for use in functional genomics
Post Your Comments:
(Date:11/2/2015)... Nov. 2, 2015  SRI International has been awarded ... preclinical development services to the National Cancer Institute (NCI) ... provide scientific expertise, modern testing and support facilities, and ... pharmacology and toxicology studies to evaluate potential cancer prevention ... The PREVENT Cancer Drug Development Program is an NCI-supported ...
(Date:10/29/2015)... , Oct. 29, 2015  The J. Craig Venter ... titled, "DNA Synthesis and Biosecurity: Lessons Learned and Options ... of Health and Human Services guidance for synthetic biology ... --> --> ... has the potential to pose unique biosecurity threats. It ...
(Date:10/29/2015)... 29, 2015  Rubicon Genomics, Inc., today announced ... of its DNA library preparation products, including the ... ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been optimized ... NGS libraries for liquid biopsies--the analysis of cell-free ... applications in cancer and other conditions. Eurofins Scientific ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , November 26, 2015 ... Global Biobanking Market 2016 - 2020 report analyzes ... maintaining integrity and quality in long-term samples, minimizing ... long-term cost-effectiveness. Automation minimizes manual errors such as ... technical efficiency. Further, it plays a vital role ...
(Date:11/25/2015)... BRUSSELS , November 25, 2015 ... in cat and human plaque and pave the way for ... health problems in cats     ... the most commonly diagnosed health problems in cats, yet relatively ... until now. Two collaborative studies have been conducted by researchers ...
(Date:11/25/2015)... Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... business and prospects remain fundamentally strong and highlights ... doxorubicin) recently received DSMB recommendation to continue the ... review of the final interim efficacy and safety ... Endpoint in men with heavily pretreated castration- and ...
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
Breaking Biology Technology: