Navigation Links
Dissecting the genetic components of adaptation of E. coli to the mouse gut
Date:1/11/2008

New insights into the evolutionary mechanisms that facilitate the remarkably fast adaptation of intestinal bacteria within their natural environment are provided in the January issue of PLoS Genetics by researchers from INSERM and INRA at University Paris Descartes.

Using germ-free mice a simplified but ecologically relevant system the authors analyzed the intestinal adaptation of a model bacterial strain, Escherichia coli MG1655. E. coli is naturally resident within the adult mammalian gut and one of the first bacteria to colonize the human intestine at birth. The mammalian intestine is therefore a privileged site to study how co-evolution between hosts and the trillions of bacteria that form the commensal flora has shaped the genome of each partner and promoted the development of mutualistic interactions.

Commensal bacteria settle on all surfaces exposed to the outside but most prominently in our intestine where they develop a high degree of interdependency with their host. Recent work has shown how these bacteria may impact on our health by modulating our metabolic functions and immune defences. Much less is known on how commensal bacteria adapt to the open and constantly changing ecosystem represented by our intestine.

Intestinal colonization of germ-free mice by E. coli was followed by the very rapid selection of bacteria carrying mutations in a master regulator that controls and coordinates the expression of over 100 target genes. The important selective advantage conferred by the mutations was related with their additive and independent effects on genes regulating bacterial motility and permeability.

These results suggest that global regulators may have evolved to coordinate physiological activities necessary for adaptation to complex environments and that mutations offer a complementary genetic mechanism to adjust the scale of the physiological regulation controlled by these regulators in distinct environments.

While this study yields an interesting model to analyze how intestinal bacteria can adapt to their host, the authors stress that it represents a simplified ecological system compared with the complexity prevailing within the human intestine. Future work will be necessary to assess how commensal bacteria can adapt to their host while simultaneously competing with hundreds of other bacterial species present in the intestinal microecological system.


'/>"/>

Contact: Mary Kohut
Press@plos.org
415-568-3460
Public Library of Science
Source:Eurekalert

Related biology news :

1. Researchers move 2 steps closer to understanding genetic underpinnings of autism
2. Genetic breakthrough offers promise in tackling kidney tumors
3. Genetic variant predicts antipsychotic response for schizophrenia patients by ethnicity
4. Recurrent genetic deletion linked to autism
5. Study examines genetic defects linked to body abnormalities in patients with childhood cancer
6. New clinical trial results show how personalized medicine will alter treatment of genetic disorders
7. Cognitive, genetic clues identified in imaging study of alcohol addiction
8. Plant geneticists find veritas in vino
9. UT-Houstons Northrup and colleagues uncover genetic link to spina bifida
10. Study of bear hair will reveal genetic diversity of Yellowstones grizzlies
11. A research of the UGR shows the genetic predisposition to develop alcohol abuse
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... SAN DIEGO , Oct. 9, 2017 /PRNewswire/ ... a biological mechanism by which its ProCell stem ... of critical limb ischemia.  The Company, demonstrated that ... the amount of limbs saved as compared to ... of the molecule HGF resulted in reduction of ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in ... professor in Harvard University’s Departments of Physics and Astronomy, has been selected for membership ... the winning team for the 2015 Breakthrough Prize in Fundamental physics for the discovery ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses the surface ... detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The prospective multicenter ...
(Date:10/7/2017)... (PRWEB) , ... October 06, ... ... leader in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, ... Hi-C kit and accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution ...
Breaking Biology Technology: