Navigation Links
Disease knowledge may advance faster with CRISPR gene probing tool

Scientists at UC San Francisco have found a more precise way to turn off genes, a finding that will speed research discoveries and biotech advances and may eventually prove useful in reprogramming cells to regenerate organs and tissues.

The strategy borrows from the molecular toolbox of bacteria, using a protein employed by microbes to fight off viruses, according to the researchers, who describe the technique in the current issue of Cell.

Turning off genes is a major goal of treatments that target cancer and other diseases. In addition, the ability to turn genes off to learn more about how cells work is a key to unlocking the mysteries of biochemical pathways and interactions that drive normal development as well as disease progression.

"We've spent energy and effort to map the human genome, but we don't yet understand how the genetic blueprint leads to a human being, and how we can manipulate the genome to better understand and treat disease," said Wendell Lim, PhD, a senior author of the study. Lim is director of the UCSF Center for Systems and Synthetic Biology, a Howard Hughes Medical Investigator and professor of cellular and molecular pharmacology.

The new technology developed by the team of UCSF and UC Berkeley researchers is called CRISPR interference not to be confused with RNA interference, an already popular strategy for turning off protein production.

"CRISPR interference is a simple approach for selectively perturbing gene expression on a genome-wide scale," said Lei Stanley Qi, PhD, a UCSF Systems Biology Fellow who was the lead author of the Cell study. "This technology is an elegant way to search for any short DNA sequence in the genome, and to then control the expression of the gene where that sequence is located."

The technique will allow researchers to more easily and accurately trace patterns of gene activation and biochemical chains of events that take place within cells, Qi said, and will help scientists identify key proteins that normally control these events and that may go awry in disease.

Unlike conventional RNA interference techniques, CRISPR interference allows any number of individual genes to be silenced at the same time, Qi said. In addition, it acts more crisply, if you will, by not turning off untargeted genes the way RNA interference techniques do.

Gene switching by RNA interference was identified more than a decade ago, launching a new research field that has spawned a Nobel Prize and billion-dollar biotech firms. In January, the U.S. Food and Drug Administration announced its first approval of an injectable disease therapy based on a similar interference strategy, a drug to treat a rare form of high cholesterol.

RNA interference blocks the messenger RNA that drives protein protection based on the blueprint contained within a gene's DNA sequence. By preventing protein production, RNA interference may be used to get around the problem of difficult-to-target proteins, a frequent challenge in drug development.

But CRISPR interference acts one step earlier in the cell's protein manufacturing process. "The horse has already left the barn with RNA interference, in the sense that the RNA message already has been transcribed from DNA," said Jonathan Weissman, PhD, a Howard Hughes Medical Investigator and professor of cellular and molecular pharmacology, who is another senior author on the work. "With CRISPR interference, we can prevent the message from being written."

CRISPR an acronym for "clustered regularly interspaced short palindromic repeats" is a system that bacteria use to defend themselves against viruses. CRISPR acts like a vaccine, incorporating bits of genes from viruses. Bacteria can reference this library of virus genes to recognize and attack viral invaders.

Qi and colleagues used a protein from this system, called Cas9, as a chassis into which they can insert any specific RNA partner molecule. The selected RNA serves as an adaptor that determines the target anywhere within the genome. "Targeting the machinery to new sites is extremely flexible and quick," Qi said.

The research team was able to get the system to work in mammalian cells as well as bacterial cells, and is working to improve its efficiency in mammalian cells, including human cells. The team aims to couple the Cas9 chassis to an enzyme that will enable the technology to turn genes on as well as off.

Such a versatile tool could prove valuable in efforts to reprogram cells for regenerative medicine. Lim's own lab is working on reprogramming immune cells to treat cancer.

"The idea is to reprogram cells to do the things we want them to do," Lim said. "We are still unlocking the secrets of the genome to harness the power of cellular reprogramming."


Contact: Jeffrey Norris
University of California - San Francisco

Related biology news :

1. Age at first menstrual cycle, menopause tied to heart disease risk
2. Circuitry of cells involved in immunity, autoimmune diseases exposed
3. International study: Excess dietary salt may drive the development of autoimmune diseases
4. Green tea extract interferes with the formation of amyloid plaques in Alzheimers disease
5. Researchers id queens, mysterious disease syndrome as key factors in bee colony deaths
6. Adding to the list of disease-causing proteins in brain disorders
7. Study maps human metabolism in health and disease
8. Parkinsons disease: Parkin protects from neuronal cell death
9. Zeroing in on heart disease
10. Research supports promise of cell therapy for bowel disease
11. Biologists explore link between amphibian behavior and deadly disease
Post Your Comments:
Related Image:
Disease knowledge may advance faster with CRISPR gene probing tool
(Date:10/12/2015)... Hoyos Labs , ... will introduce its new biometric four-finger (4F) ... providing an unprecedented level of security / ... new biometric standard for secure transactions (BOPS). ... financial services to healthcare are implementing Hoyos, ...
(Date:10/8/2015)... 8. Oktober 2015 Die Track ... Unternehmen des Bereiches Tracking, hat heute bekannt ... Gefängnisbehörde Virginias (Department of Corrections – DOC) ... für alle Strafen geliefert werden, die der ... Präsident für den Amerikanischen Kontinent der Track ...
(Date:10/6/2015)... MATEO, Calif. , Oct. 6, 2015 /PRNewswire/ ... company, today announced enhancements to its software portfolio ... expression analysis kit for differential expression in eukaryotes. ... Platform, which is a cloud-based genomic analysis solution ... advance scientific discovery from next-generation sequencing efforts. ...
Breaking Biology News(10 mins):
(Date:10/12/2015)... cell surface marker detection market ... to a new report by Grand View Research, Inc. This ... of oncology diseases and other cell-associated disorders. --> ... USD 6.49 billion by 2022, according to a new report ... be attributed to rise in incidence of oncology diseases and ...
(Date:10/12/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... and commercializing novel treatments in oncology, endocrinology and women,s ... , the Company,s former Senior Vice President, Chief Financial ... Quebec City office.  David ... of the Company commented, "After a comprehensive review, the ...
(Date:10/12/2015)... -- LabStyle Innovations Corp. (OTCQB: DRIO), ... its Medical Director, Dr. Moshe Kamar , will ... EAI International Conference on Wireless Mobile Communication and Healthcare ... and wireless technologies," the conference will take place in ... - 16, 2015. The conference is endorsed and organized ...
(Date:10/12/2015)... , Oct. 12, 2015 VolitionRx Limited ... completed clinical study of its NuQ ® blood-based test ... online issue of Clinical Epigenetics , the official journal ... in collaboration with Lund University, ... , MD, PhD, Professor of Surgery and Vice-Dean, Faculty of ...
Breaking Biology Technology: