Navigation Links
Discovery of plant 'nourishing gene' brings hope for increased crop seed yield and food security
Date:1/13/2012

University of Warwick scientists have discovered a "nourishing gene" which controls the transfer of nutrients from plant to seed - a significant step which could help increase global food production.

The research, led by the University of Warwick in collaboration with the University of Oxford and agricultural biotech research company Biogemma, has identified for the first time a gene, named Meg1, which regulates the optimum amount of nutrients flowing from mother to offspring in maize plants.

Unlike the majority of genes that are expressed from both maternal and paternal chromosomes, Meg1 is expressed only from the maternal chromosomes.

This unusual form of uniparental gene expression, called imprinting, is not restricted to plants, but also occurs in some human genes which are known to regulate the development of the placenta to control the supply of maternal nutrients during fetal growth.

While scientists have known for a while of the existence of such imprinted genes in humans and other mammals, this is the first time a parallel gene to regulate nutrient provisioning during seed development has been identified in the plant world.

The findings mean that scientists can now focus on using the gene and understanding the mechanism by which it is expressed to increase seed size and productivity in major crop plants.

Dr Jose Gutierrez-Marcos, Associate Professor in the University of Warwick's School of Life Sciences, said: "These findings have significant implications for global agriculture and food security, as scientists now have the molecular know-how to manipulate this gene by traditional plant breeding or through other methods to improve seed traits, such as increased seed biomass yield.

"This understanding of how maize seeds and other cereal grains develop for example in rice and wheat - is vital as the global population relies on these staple products for sustenance".

"To meet the demands of the world's growing population in years to come, scientists and breeders must work together to safeguard and increase agricultural production."

Professor Hugh Dickinson of Oxford University's Department of Plant Sciences added: "While the identification of MEG1 is an important discovery in its own right, it also represents a real breakthrough in unravelling the complex gene pathways that regulate the provisioning and nutritional content of seeds."

The research, supported by the European Union, the Biotechnology and Biological Sciences Research Council and the Royal Society (BBSRC), is published in Current Biology under the title Maternal control of nutrient allocation in plant seeds by genomic imprinting.


'/>"/>

Contact: Anna Blackaby
a.blackaby@warwick.ac.uk
44-247-657-5910
University of Warwick
Source:Eurekalert

Related biology news :

1. Discovery could help stem smoking-related diseases
2. Georgetown researchers lead discovery expected to significantly change biomedical research
3. New horned dinosaur announced nearly 100 years after discovery
4. Researchers awarded $3.2 million from NIH to pioneer advanced biomolecule discovery technology
5. UGA discovery changes how scientists think about plant cell wall formation
6. Discovery of therapeutic peptides affecting mitochondria
7. ORNL fundamental discovery casts enzymes in new light
8. Scripps research team achieves critical step to opening elusive class of compounds to drug discovery
9. Discovery of new gene could improve efficiency of molecular factories
10. Lung regeneration closer to reality with new discovery by Weill Cornell Medical College researchers
11. Discovery announced in Science represents new paradigm in the way drugs can be manufactured
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/26/2017)... DALLAS , Feb. 25, 2017  Securus ... justice technology solutions for public safety, investigation, corrections ... of Recidivism and Reentry. "Too often, ... State prisons and county jails are trying to ... of inmates and friends and family members. While significant ...
(Date:2/22/2017)... , Feb. 22, 2017 With ... 2021, ABI Research identifies four technologies that innovative ... to secure significant share in the changing competitive ... and passive authentication.   "Companies can ... comes to security," says Dimitrios Pavlakis , ...
(Date:2/21/2017)... , February 21, 2017 Der ... US-Dollar wachsen. Nach einem Gespräch mit mehr als 50 Vertretern ... Hindernisse zu überwinden gilt, um diese Prognose zu realisieren. ... ... die Mobilisierung der finanziellen Mittel für die Biobank, die ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... ... March 29, 2017 , ... Bactana Animal Health, a company developing natural ... supply through enhancement of the gut microbiota, today announced the closing of its first ... New York-based Sustainable Income Capital Management, LLC and a number of private investors. The ...
(Date:3/29/2017)... March 29, 2017 /PRNewswire/ -  GeneNews Limited (TSX:GEN) ("GeneNews" ... , a new risk stratification test for breast cancer, via ... Diagnostics Laboratory ("IDL"). BreastSentry incorporates a blood-based biomarker test with ... risk for developing breast cancer.   ... BreastSentry measures the fasting plasma ...
(Date:3/28/2017)... ... March 28, 2017 , ... ... replace paper-based processes and enhance training plan management for consistent implementation of standards ... partner with the SHL Group to help improve and streamline their training and ...
(Date:3/28/2017)... ... March 28, 2017 , ... Ecovia Renewables, Inc. ... Research (SBIR) grant from the National Science Foundation (NSF). Under the award ... a suite of BioGel™ biopolymer materials for hygiene applications, particularly for use in ...
Breaking Biology Technology: