Navigation Links
Discovery of key pathway interaction may lead to therapies that aid brain growth and repair
Date:9/16/2010

WASHINGTON, DCResearchers at the Center for Neuroscience Research at Children's National Medical Center have discovered that the two major types of signaling pathways activated during brain cell developmentthe epidermal growth factor receptor pathway and the Notch pathwayoperate together to determine how many and which types of brain cells are created during growth and repair in developing and adult brains. This knowledge may help scientists design new ways to induce the brain to repair itself when these signals are interrupted, and indicate a need for further research to determine whether disruptions of these pathways in early brain development could lead to common neurodevelopmental disorders such as epilepsy, cerebral palsy, autism, Down syndrome, ADHD, and intellectual disabilities.

"By understanding how these cellular signaling pathways operate in the brain, we may be able to develop genetic or molecular approaches that target those signals to facilitate or induce regeneration of the brain from neural stem cells," said Vittorio Gallo, PhD, director of the Center for Neuroscience Research at Children's National. "These signaling pathways, normally activated during brain development, work in concert through the cellular microenvironment and through interactions with existing brain cells to determine how many of each type of brain cell are required for proper brain function."

These findings will be published in the September issue of Nature.

Dr. Gallo and the research team used an approach in a laboratory setting that modified genes involved in the two signaling pathways. This approach induced gain or loss of function, allowing researchers to change the properties of neural stem cells as they developedincluding altering the size of the pool of neural stem cells in the brain, the number of viable neural stem cells, and types of brain cells these stem cells ultimately become.

Neural stem cells can develop into all major cell types of the brain. The discovery of the interaction between the two types of cellular signaling pathways is a critical step toward understanding, and potentially impacting, the molecular networks that regulate the cellular microenvironments, or niches, in which these neural stem cells operate.

"Children's National provides an ideal setting for pursuing this research, because we are able to use a multidisciplinary approach to our studies," Dr. Gallo said. "Investigators and clinical fellows work together in the labs to tackle important questions that have great clinical importance for children with neurodevelopmental disabilities, and tap resources and expertise at other institutions as well. This environment allows us to translate our findings into the design of specific therapeutic approaches, working together with neuroscientists, child neurologists, neurosurgeons, and neuro-oncologists."


'/>"/>

Contact: Jennifer Stinebiser
jstinebi@cnmc.org
202-476-4500
Children's National Medical Center
Source:Eurekalert

Related biology news :

1. Biofuel from inedible plant material easier to produce following enzyme discovery
2. Discovery offers hope of saving sub-Saharan crops from devastating parasites
3. Gene discovery holds key to growing crops in cold climates
4. First discovery of bilirubin in a flower announced
5. Report: Discovery networks hostage-taking a rare terror event
6. New discovery suggests our lungs are innately prone to silicosis and related diseases
7. A plan to promote sustainable US scientific discovery and innovation in the 21st century is proposed in OMICS
8. Discovery opens door to therapeutic development for FSH muscular dystrophy
9. Possible discovery of earliest animal life pushes back fossil record
10. Discovery of possible earliest animal life pushes back fossil record
11. Huntingtons disease discovery provides new hope for treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... implantation and pregnancy rates in frozen and fresh in vitro fertilization (IVF) ... and maternal age to IVF success. , After comparing the results from the ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... FirstHand program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand ... Excellence in Volunteer Experience from US2020. , US2020’s mission is to change the ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... process optimization firm for the life sciences and healthcare industries, announces a presentation ... San Francisco. , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will ...
(Date:10/9/2017)... ... ... At its national board meeting in North Carolina, ARCS® Foundation President ... and Astronomy, has been selected for membership in ARCS Alumni Hall of Fame ... Prize in Fundamental physics for the discovery of the accelerating expansion of the universe, ...
Breaking Biology Technology: