Navigation Links
Discovery may pave way to genetically enhanced biofuel crops
Date:12/20/2012

Best known for its ability to transform simmering pots of sugared fruit into marmalades and jams, pectin is a major constituent of plant cell walls and the middle lamella, the sticky layer that glues neighboring plant cells together. Pectin imparts strength and elasticity to the plant and forms a protective barrier against the environment. Several different kinds of pectic compounds combine to form pectin. The relative proportion of each of these depends on the plant species, location within the plant, and environment. Pectic compounds decorated with β-1,4-galactan (a chain of six-carbon sugars) are of considerable interest to the biofuels industry, because six-carbon sugars are readily converted into ethanol (biofuel) by fermenting microorganisms. A new study published in The Plant Cell reveals a novel enzyme involved in the production of β-1,4-galactans. This enzyme may be used to engineer plants with more desirable attributes for conversion to biofuel.

The major enzymes that catalyze pectin production are hard to pin down. Close to 70 enzymes are predicted to underlie pectin synthesis in plants; only about three of these have been identified definitively. Knowledge of these enzymes could be used to boost the production of pectins with desirable characteristics.

A team of researchers at the Joint BioEnergy Institute, University of California, Berkeley, and Technical University of Denmark set out to identify the enzymes that catalyze the production of β-1,4-galactan. They screened a database of enzymes for galactosyltransferases, the enzymes that link six-carbon galactose sugars into a chain. They found a family of proteins, named GT92, that are present in some animals and all plants sequenced to date. The authors found that mutations in each of the three genes encoding the GT92 proteins in the model plant Arabidopsis led to a reduction in β-1,4-galactan, whereas producing more of one of these proteins led to a 50% increase in β-1,4-galactan levels. In many cases, modifying the composition of plant cell wall components leads to alterations in growth or stature. Strikingly, all of the plant lines overproducing this important six-carbon sugar appeared to be healthy. Biochemical tests of the enzymatic properties of purified Arabidopsis GT92 protein supported the hypothesis that GT92 proteins are important enzymes for β-1,4-galactan synthesis in plants. This means that crops engineered to produce increased levels of GT92 proteins might contain more easily fermentable sugars, thereby potentially boosting the efficiency of biofuel production.

According to lead scientist Henrik Scheller, "Bioenergy crops with high β-1,4-galactan content would have significant advantages for the biofuels industry and we now have the knowledge to specifically increase β-1,4-galactan content in the biomass of cell walls. This breakthrough was made possible by a collaboration involving members of the Feedstocks Division at JBEI and our collaborators in Denmark. We are very excited about this result and look forward to testing it in a bioenergy crop such as switchgrass or poplar trees".


'/>"/>

Contact: Kathy R. Munkvold
kmunkvold@aspb.org
301-296-0914
American Society of Plant Biologists
Source:Eurekalert  

Related biology news :

1. LSUHSC research discovery provides therapeutic target for ALS
2. Discovery of pathway leading to depression reveals new drug targets
3. Discovery of 100 million-year-old regions of DNA shows short cut to crop science advances
4. Discovery of molecular pathway of Alzheimers disease reveals new drug targets
5. The Journal of Biological Chemistry commemorates an important 1987 discovery
6. GW Research chosen as paper of the week for blood coagulation discovery
7. NIH-funded genetic sequencing tool speeds drug discovery, disease diagnostics
8. Discovery of reprogramming signature may help further stem cell-based regenerative medicine research
9. King Richard III search in new phase after discovery has potential to rewrite history
10. New discovery related to gum disease
11. Cant smell anything? This discovery may give you hope
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Discovery may pave way to genetically enhanced biofuel crops
(Date:5/20/2016)... 2016  VoiceIt is excited to announce its ... By working together, VoiceIt and VoicePass will ... VoicePass take slightly different approaches to voice biometrics, ... and usability. ... partnership. "This marketing and technology partnership ...
(Date:5/3/2016)... 3, 2016  Neurotechnology, a provider of high-precision ... Automated Biometric Identification System (ABIS) , a complete ... MegaMatcher ABIS can process multiple complex biometric transactions ... of fingerprint, face or iris biometrics. It leverages ... and MegaMatcher Accelerator , which have been ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... Calif. (PRWEB) , ... May 25, 2016 , ... Lajollacooks4u ... area and has consistently been rated one of its top attractions. Fortune 500 ... globe to participate in a unique and intimate team-building experience. , Each event kicks ...
(Date:5/25/2016)... ... May 25, 2016 , ... Founder ... double board-certified in surgery and surgery of the hand by the National Board ... stranger to going above and beyond in his pursuit of providing the most ...
(Date:5/25/2016)... ... May 25, 2016 , ... WEDI, the nation’s leading authority on the use ... W. Stellar has been named by the WEDI Board of Directors as WEDI’s president ... executive leader with more than 35 years of experience in healthcare, association management and ...
(Date:5/24/2016)... Worcester, Mass. (PRWEB) , ... May 24, 2016 ... ... including heart attacks, diabetes, and traumatic injuries, will be accelerated by research at ... skin cells into engines of wound healing and tissue regeneration. , The novel ...
Breaking Biology Technology: