Navigation Links
Discovery makes brain tumor cells more responsive to radiation
Date:12/2/2009

DURHAM, N.C. Duke University Medical Center researchers have figured out how stem cells in the malignant brain cancer glioma may be better able to resist radiation therapy. And using a drug to block a particular signaling pathway in these cancer stem cells, they were able to kill many more glioma cells with radiation in a laboratory experiment.

The work builds off earlier research which showed that cancer stem cells resist the effects of radiation much better than other cancer cells.

The Duke team identified a known signaling pathway called Notch as the probable reason for the improved resistance. Notch also operates in normal stem cells, where it is important for cell-cell communication that controls cell growth and differentiation processes. The study was published in late November by Stem Cells journal.

"This is the first report that Notch signaling in tumor tissue is related to the failure of radiation treatments," said lead author Jialiang Wang, Ph.D., a research associate in the Duke Division of Surgery Sciences and the Duke Translational Research Institute. "This makes the Notch pathway an attractive drug target. The right drug may be able to stop the real bad guys, the glioma stem cells."

Stem cells in a cancer are the source of cancer cell proliferation, Wang said. Hundreds of cancer stem cells can quickly become a million tumor cells.

The Duke researchers, in collaboration with a team led by Dr. Jeremy Rich at Cleveland Clinic, used drugs called gamma-secretase inhibitors that target a key enzyme involved in Notch signaling pathway on gliomas in a lab dish. These inhibitors are being studied by other researchers for their ability to fight tumors in which Notch is abnormally activated, such as leukemia, breast and brain tumors.

"In our study, gamma-secretase inhibitors alone only moderately slowed down tumor cell growth," said senior author Dr. Bruce Sullenger, Duke Vice Chair for Research and Joseph W. and Dorothy W. Beard Professor of Surgery. "But when we looked at these molecules combined with radiation at clinically relevant doses, the combination caused massive cell death in the tumors and significantly reduced survival of glioma stem cells. These findings often correlate with better tumor control."

Wang said ongoing clinical trials are testing gamma-secretase inhibitors as stand-alone therapy for breast and brain tumors. "Our study suggests that Notch inhibition using these drugs would provide significant therapeutic benefits if combined with radiotherapy, and I hope that future research will study this combination therapy in this vulnerable patient population," Wang said. "More effective radiation may be attainable if we can stop Notch signaling in the tumor stem cells."


'/>"/>

Contact: Mary Jane Gore
mary.gore@duke.edu
919-660-1309
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Discovery may help defang viruses
2. Stomach stem cell discovery could bring cancer insights
3. Symposium marks 30th anniversary of discovery of third domain of life
4. Emory paleontologist reports discovery of carnivorous dinosaur tracks in Australia
5. Natural product discovery by Cleveland medical researchers blocks tissue destruction
6. Researchers discovery may lead to hypertension treatment
7. Yale discovery suggests protein may play a role in severe asthma
8. Galapagos and Cystic Fibrosis Foundation Therapeutics announce drug discovery collaboration
9. Profound immune system discovery opens door to halting destruction of lupus
10. Scripps Research discovery leads to broad potential applications in CovX-Pfizer deal
11. New discovery could reduce the health risk of high-fat foods
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: