Navigation Links
Direct observation of carbon monoxide binding to metal-porphyrines
Date:1/10/2011

The mechanism for binding oxygen to metalloporphyrins is a vital process for oxygen-breathing organisms. Understanding how small gas molecules are chemically bound to the metal complex is also important in catalysis or the implementation of chemical sensors. When investigating these binding mechanisms, scientists use porphyrin rings with a central cobalt or iron atom. They coat a copper or silver support surface with these substances.

An important characteristic of porphyrins is their conformational flexibility. Recent research has shown that each specific geometric configuration of the metalloporphyrins has a distinct influence on their functionality. In line with the current state of research, the scientists expected only a single CO molecule to bind axially to the central metallic atom. However, detailed scanning tunnel microscopy experiments by Knud Seifert revealed that, in fact, two gas molecules dock between the central metallic atom and the two opposite nitrogen atoms. Decisive is the saddle shape of the porphyrin molecules, in which the gas molecules assume the position of the rider.

The significance of the saddle geometry became apparent in model calculations done by Marie-Laure Bocquet from the University of Lyon. Her analysis helped the researchers understand the novel binding mode in detail. She also showed that the shape of the molecular saddle remains practically unchanged, even after the two gas molecules bind to the porphyrin.

The porphyrins reacted very differently when the researchers replaced the carbon monoxide with stronger-binding nitrogen monoxide. As expected, this binds directly to the central atom, though only a single molecule fits in each porphyrin ring. This has a significant effect on the electronic structure of the carrier molecule, and the characteristic saddle becomes flattened. Thus, the porphyrin reacts very differently to different kinds of gas a result that is relevant for potential applications, such as sensors.

Dr. Willi Auwaerter, one of the authors, is thrilled: "What's new is that we actually saw, for the first time, the mechanism on a molecular level. We even can selectively move individual gas molecules from one porphyrin to another." The team aims to explain the physical and chemical processes on surfaces and in nanostructures. Once these fundamental questions are answered, they will take on new challenges: How big is the influence of the central atom? How does the binding change in planar conformations? How can such systems be utilized to implement catalyzers and sensors through controlled charge transfers?


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology news :

1. Directed self-assembly of vertical nanotubes for biosensors, logic, nano-biofuel cells
2. Elsevier announces the SciVerse ScienceDirect eBooks collection 2011 frontlist
3. UNC scientist receives NIH directors New Innovator Award
4. Tile drainage directly related to nitrate loss
5. LSUs WAVCIS director says oil remains below surface, will come ashore in pulses
6. UTHealth neuroscientist wins prominent NIH Directors Pioneer Award
7. Researchers demonstrate highly directional terahertz laser rays
8. Case Western Reserve geneticist receives prestigious NIH Directors Pioneer Award
9. A collaboration solves the herpes virus protein structure providing new drug therapy directions
10. Scientists find direct line from development to growth
11. New study first to directly measure body temperatures of extinct species
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Direct observation of carbon monoxide binding to metal-porphyrines
(Date:3/7/2017)... March 7, 2017 Brandwatch , the leading social ... The Prince,s Trust to uncover insights to support its reporting, ... The UK,s leading youth charity will be using Brandwatch ... and get a better understanding of the topics and issues that ... ...
(Date:3/2/2017)... LONDON , March 2, 2017 Who ... infringement lawsuits? Download the full report: https://www.reportbuyer.com/product/4313699/ ... ON THE FINGERPRINT SENSOR FIELD? Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:2/28/2017)... , Spanien, 27. Februar 2017  EyeLock LLC, ein ... wird seine erstklassige biometrische Lösung zur Iris-Erkennung ... mit X16 LTE auf dem Mobile World ... am Qualcomm-Stand in Halle 3, Stand 3E10, ... die Sicherheitsplattform Qualcomm Haven™ – eine Kombination ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... Research and Markets has announced the ... to their offering. ... The Global Market for Bioproducts Should Reach ... a CAGR of 8.9%, This research report ... seven major product segments: bio-derived chemicals, biofuels, pharmaceuticals (biodrugs and ...
(Date:3/23/2017)... PARK, Calif., March 23, 2017  BioPharmX Corporation ... products for the dermatology market, today reported financial ... 31, 2017, and will provide an update on ... the year. "We are pleased to ... year for BioPharmX," said President Anja Krammer. "We ...
(Date:3/23/2017)... , March 23, 2017 According to a ... and derivatives market is fragmented due to the presence of a large ... Proliant, Thermo Fisher , and Sigma-Aldrich, compete with each other ... companies, collectively, held more than 76% of this market in 2016.  ... As of now, ...
(Date:3/22/2017)... , March 22, 2017 Regeneron Pharmaceuticals, Inc. ... Regeneron Genetics Center (RGC), U.K. Biobank and GSK to generate ... U.K. Biobank resource. The initiative will enable researchers to gain ... medicines for a wide range of serious and life threatening ... ...
Breaking Biology Technology: