Navigation Links
Dine or dash? Genes help decide when to look for new food
Date:3/16/2011

For worms, choosing when to search for a new dinner spot depends on many factors, both internal and external: how hungry they are, for example, how much oxygen is in the air, and how many other worms are around. A new study demonstrates this all-important decision is also influenced by the worm's genetic make-up.

In the simple Caenorhabditis elegans nematode, the researchers found that natural variations in several genes influence how quickly a worm will leave a lawn of bacteria on which it's feeding. One of the genes, called tyra-3, produces a receptor activated by adrenalinea chemical messenger involved in the 'fight-or-flight' response. The findings appeared online March 16, 2011, in the journal Nature.

"What's encouraging to us about this story is that molecules related to adrenaline are implicated in arousal systems and in decision-making across a lot of different animals, including humans," says Howard Hughes Medical Institute investigator Cornelia Bargmann of Rockefeller University in New York, who mentored the work of graduate student Andres Bendesky. These parallels between diverse species suggest that aspects of our decision-making abilities have ancient evolutionary roots.

Six worms on a small lawn of bacterial food (circle). Occasionally, a worm leaves the food to explore the surrounding environment. Video: Bendesky et al. Nature

C. elegans thrive in agricultural settings, such as orchards and crop lands, feeding on bacteria from rotting fruits and vegetables. But eating in this environment is tricky: the worms encounter many bacterial species that are difficult to digest or even toxic. "The worms need to somehow evaluate a whole spectrum of conditions to decide whether they want to try this food source or go out and look for a better one," Bargmann says.

The great scientific advantage of using C. elegans to study complicated behavioral processes such as decision-making is that the worms have only 302 neurons, and the connections between all those neurons have all been precisely mapped. In contrast, the human brain has billions of neurons. What's more, most of the worm's 20,000 genes have equivalents in the human genome. "Behavior includes the action of genes, their function in neurons, and the neurons' assembly into circuits," Bargmann says. "Studying C. elegans gives you an exceptional ability to make connections between those levels."

Over the past decade, her lab has probed several of these levels. In 2004, they reported that C. elegans sense precise oxygen concentrations in soil, which helps steer them toward their favorite meal: oxygen-consuming bacteria. Three years later, they investigated what neurons do with chemosensory information, finding that odor-sensing neurons can switch on other cells that control crawling and turning behaviors.

In the new study, Bendesky and Bargmann went one level deeper, investigating how genetic tweaks can change a worm's behavior in particular circumstances. To do their experiments, the researchers placed hundreds of different strains of C. elegans onto Petri dishes lined with a circular "lawn" of bacteria and calculated the rate at which worms left the lawn. "Lawn-leaving is something that occurs abruptly, in an all-or-none way. It's very striking," Bargmann says.

To find the genes that affect the behavior, they collaborated with HHMI investigator Leonid Kruglyak and his postdoc Matt Rockman to use a technique called quantitative trait locus analysis, they then analyzed the precise genetic make-up of each strain and correlated it with how frequently each strain left its lawn. In the end, the researchers could pinpoint particular genetic blips associated with moving away from a food source.

One of those blips crops up in a gene called npr-1, which had already been associated with foraging behaviors and immunity in the worm. The npr-1 variant is a special case, however, because it evolved in laboratory strains of C. elegans and is not known to exist in the wild.

In a more exciting development, the researchers also found a natural genetic variation in tyra-3 that is associated with lawn-leaving. This gene encodes a receptor protein that responds to tyramine, an adrenalinelike hormones derived from the amino acid tyrosine. Like adrenaline, tyramine is an internal signal that regulates the function of neurons expressing its various receptors.

To find out where in the brain the tyra-3 gene is turned on, the researchers engineered strains of worms in which they could observe production of tyra-3. By attaching a fluorescent green marker to the tyra-3 protein, they could easily observe whenever the protein was made. They then traced where the green fluorescence appeared inside the worms and discovered that the tyra-3 receptor is produced in a place that makes intuitive sense: sensory neurons. In these neurons, external cues, such as oxygen levels, can be integrated with internal states, such as hunger. "It's the result you would have gotten if you made it up," Bargmann says, laughing.

The findings show that particular genetic variants lead to specific behaviors in the real worldbut how, exactly, they do this is still mysterious. "We don't have a fix on when tyramine is being made, where it's released, and how it's working to change behavior," Bargmann says.

Figuring that out is the obvious next step. The trouble is, the tools for tracking the brain's chemical messengers in real time don't exist yet. "We'll just have to put our heads down and develop some," she says.


'/>"/>

Contact: Jim Keeley
keeleyj@hhmi.org
301-215-8858
Howard Hughes Medical Institute
Source:Eurekalert

Related biology news :

1. Study shows how plants sort and eliminate genes over millennia
2. An Israel prize in his genes
3. Suggesting genes friends, Facebook-style
4. David and Goliath viruses shed light on the origin of jumping genes: UBC study
5. Better brain wiring linked to family genes
6. University of Maryland School of Medicine study identifies genes associated with binge drinking
7. U. Iowa team investigates function of junk DNA in human genes
8. Just like cars, developmental genes have more than 1 way to stop
9. Good diets fight bad Alzheimers genes
10. Partnership of genes affects the brains development
11. The most genes in an animal? Tiny crustacean holds the record
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/24/2017)... Janice Kephart , former 9/11 ... Partners, LLP (IdSP) , today issues the following ... March 6, 2017 Executive Order: Protecting the ... be instilled with greater confidence, enabling the reactivation ... applications are suspended by until at least July ...
(Date:4/18/2017)... a global expert in SoC-based imaging and computing solutions, has developed ... the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® , ... showcased during the upcoming Medtec Japan at Tokyo Big Sight April ... Vegas Convention Center April 24-27. ... Click here for an image of the M820 ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... a leading provider of patient support solutions, has announced the ... which will launch this week. The VMS CNEs will address ... enhance the patient care experience by delivering peer-to-peer education programs ... to help women who have been diagnosed and are being ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and ... of osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Rotary Club. The event entitled “Stem Cells and Their Regenerative Powers,” ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, ...
(Date:10/10/2017)... ... 2017 , ... The Pittcon Program Committee is pleased to ... who have made outstanding contributions to analytical chemistry and applied spectroscopy. Each award ... conference and exposition for laboratory science, which will be held February 26-March 1, ...
Breaking Biology Technology: