Navigation Links
Different neuronal groups govern right-left alternation when walking
Date:6/30/2013

Scientists at Karolinska Institutet in Sweden have identified the neuronal circuits in the spinal cord of mice that control the ability to produce the alternating movements of the legs during walking. The study, published in the journal Nature, demonstrates that two genetically-defined groups of nerve cells are in control of limb alternation at different speeds of locomotion, and thus that the animals' gait is disturbed when these cell populations are missing.

Most land animals can walk or run by alternating their left and right legs in different coordinated patterns. Some animals, such as rabbits, move both leg pairs simultaneously to obtain a hopping motion. In the present study, the researchers Adolfo Talpalar and Julien Bouvier together with professor Ole Kiehn and colleagues, have studied the spinal networks that control these movement patterns in mice. By using advanced genetic methods that allow the elimination of discrete groups of neurons from the spinal cord, they were able to remove a type of neurons characterized by the expression of the gene Dbx1.

"It was classically thought that only one group of nerve cells controls left right alternation", says Ole Kiehn who leads the laboratory behind the study at the Department of Neuroscience. "It was then very interesting to find that there are actually two specific neuronal populations involved, and on top of that that they each control different aspect of the limb coordination."

Indeed, the researchers found that the gene Dbx1 is expressed in two different groups of nerve cells, one of which is inhibitory and one that is excitatory. The new study shows that the two cellular populations control different forms of the behaviour. Just like when we change gear to accelerate in a car, one part of the neuronal circuit controls the mouse's alternating gait at low speeds, while the other population is engaged when the animal moves faster. Accordingly, the study also show that when the two populations are removed altogether in the same animal, the mice were unable to alternate at all, and hopped like rabbits instead.

There are some animals, such as desert mice and kangaroos, which only hop. The researchers behind the study speculate that the locomotive pattern of these animals could be attributable to the lack of the Dbx1 controlled alternating system.


'/>"/>

Contact: Press Office
pressinfo@ki.se
46-852-486-077
Karolinska Institutet
Source:Eurekalert

Related biology news :

1. Do mens and womens hearts burn fuel differently?
2. Divide and define: Clues to understanding how stem cells produce different kinds of cells
3. Stem cell proliferation and differentiation observed within hydrogel
4. Men and women get sick in different ways
5. Antarctic and Arctic insects use different genetic mechanisms to cope with lack of water
6. Discovery may explain how prion diseases spread between different types of animals
7. BUSM study shows potential of differentiated iPS cells in cell therapy without immune rejection
8. Most-used diabetes drug works in different way than previously thought
9. Even in same vineyard, different microbes may create variations in wine grapes
10. Different genes behind same adaptation to thin air
11. Neuroscientists prove ultrasound can be tweaked to stimulate different sensations
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2017)... 1, 2017  Central to its deep commitment ... worldwide, The Japan Prize Foundation today announced the ... pushed the envelope in their respective fields of ... scientists are being recognized with the 2017 Japan ... only contribute to the advancement of science and ...
(Date:1/26/2017)... 2017  Acuity Market Intelligence today released the ... Identity".  Acuity characterizes 2017 as a "breakout" year ... reflects a new understanding of the potential benefits ... digital identity are often perceived as threats to ... Principal of Acuity Market intelligence. "However, taken together ...
(Date:1/21/2017)... DUBLIN , Jan 20, 2017 Research ... Recognition Biometrics Market 2017-2021" report to their offering. ... The global voice recognition ... period 2017-2021. The report covers the present scenario ... for 2017-2021. To calculate the market size, the report considers the ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... 23, 2017 /PRNewswire/ - The Fight Against Cancer Innovation ... (OICR) are pleased to report that Fusion Pharmaceuticals Inc. ... Johnson & Johnson Innovation – JJDC, Inc. (JJDC) as ... HealthCap, TPG Biotechnology Partners, and Genesys Capital, as well ... ...
(Date:2/23/2017)... ... February 23, 2017 , ... Brain Sentinel, Inc. has ... the SPEAC® System, the Brain Sentinel® Seizure Monitoring and Alerting System. The adjunctive ... during periods of rest. A lightweight, non-invasive monitor is placed on the belly ...
(Date:2/23/2017)...  Capricor Therapeutics, Inc. (NASDAQ: CAPR), a biotechnology company developing ... that Linda Marbán, Ph.D, president and chief executive officer, is ... Cowen and Company 37th Annual Health Care Conference ... Boston, MA 29th Annual ROTH ... pm ET) Dana Point, CA ...
(Date:2/22/2017)... ... February 22, 2017 , ... Kernel , a human ... LLC (KRS) clinical development program. KRS is a neurotechnology spin-out from the ... clinical applications. The terms of the transaction were not disclosed. , It ...
Breaking Biology Technology: