Navigation Links
Developmental neurobiology: How the brain folds to fit
Date:4/26/2013

During fetal development of the mammalian brain, the cerebral cortex undergoes a marked expansion in surface area in some species, which is accommodated by folding of the tissue in species with most expanded neuron numbers and surface area. Researchers have now identified a key regulator of this crucial process.

Different regions of the mammalian brain are devoted to the performance of specific tasks. This in turn imposes particular demands on their development and structural organization. In the vertebrate forebrain, for instance, the cerebral cortex which is responsible for cognitive functions is remarkably expanded and extensively folded exclusively in mammalian species. The greater the degree of folding and the more furrows present, the larger is the surface area available for reception and processing of neural information. In humans, the exterior of the developing brain remains smooth until about the sixth month of gestation. Only then do superficial folds begin to appear and ultimately dominate the entire brain in humans. Conversely mice, for example, have a much smaller and smooth cerebral cortex.

"The mechanisms that control the expansion and folding of the brain during fetal development have so far been mysterious," says Professor Magdalena Gtz, a professor at the Institute of Physiology at LMU and Director of the Institute for Stem Cell Research at the Helmholtz Center Munich. Gtz and her team have now pinpointed a major player involved in the molecular process that drives cortical expansion in the mouse. They were able to show that a novel nuclear protein called Trnp1 triggers the enormous increase in the numbers of nerve cells which forces the cortex to undergo a complex series of folds. Indeed, although the normal mouse brain has a smooth appearance, dynamic regulation of Trnp1 results in activating all necessary processes for the formation of a much enlarged and folded cerebral cortex.

Levels of Trnp1 control expansion and folding

"Trnp1 is critical for the expansion and folding of the cerebral cortex, and its expression level is dynamically controlled during development," says Gtz. In the early embryo, Trnp1 is locally expressed in high concentrations. This promotes the proliferation of self-renewing multipotent neural stem cells and supports tangential expansion of the cerebral cortex. The subsequent fall in levels of Trnp1 is associated with an increase in the numbers of various intermediate progenitors and basal radial glial cells. This results in the ordered formation and migration of a much enlarged number of neurons forming folds in the growing cortex.

The findings are particularly striking because they imply that the same molecule Trnp1 controls both the expansion and the folding of the cerebral cortex and is even sufficient to induce folding in a normally smooth cerebral cortex. Trnp1 therefore serves as an ideal starting point from which to dissect the complex network of cellular and molecular interactions that underpin the whole process. Gtz and her colleagues are now embarking on the next step in this exciting journey - determination of the molecular function of this novel nuclear protein Trnp1 and how it is regulated.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
0049-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. New genes contributing to autism and related neurodevelopmental disorders uncovered
2. Mice with big brains provide insight into brain regeneration and developmental disorders
3. MARC travel awards announced for the Society for Developmental Biology 71st Annual Meeting
4. Environmental estrogens affect early developmental activity in zebrafish
5. Distinct developmental patterns identified in children with autism during their first 3 years
6. Developmental bait and switch
7. Researchers find new genetic pathway behind neurodevelopmental disorders
8. Developmental biologist Arthur Lander named Donald Bren Professor
9. Researchers explain a key developmental mechanism for the first time in plants
10. UTSW molecular biologist Olson wins March of Dimes developmental biology prize
11. Developmental delays in children following prolonged seizures
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
(Date:4/11/2017)... Florida , April 11, 2017 ... a security technology company, announces the appointment of independent Directors ... Bendheim to its Board of Directors, furthering the company,s ... ... of NXT-ID, we look forward to their guidance and benefiting ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 2017 , ... DuPont Pioneer and recently formed CasZyme, a ... a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The goal of ... across all applications. , Under the terms of the agreement, Pioneer will provide ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Wound Market with the addition of its newest module, US Hemostats & Sealants. ... for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... any gene in its endogenous context, enabling overexpression experiments and avoiding the use ... with small RNA guides is transformative for performing systematic gain-of-function studies. , ...
Breaking Biology Technology: