Navigation Links
Developmental bait and switch
Date:11/2/2012

PASADENA, Calif.During the early developmental stages of vertebratesanimals that have a backbone and spinal column, including humanscells undergo extensive rearrangements, and some cells migrate over large distances to populate particular areas and assume novel roles as differentiated cell types. Understanding how and when such cells switch their purpose in an embryo is an important and complex goal for developmental biologists. A recent study, led by researchers at the California Institute of Technology (Caltech), provides new clues about this processat least in the case of neural crest cells, which give rise to most of the peripheral nervous system, to pigment cells, and to large portions of the facial skeleton.

"There has been a long-standing mystery regarding why some cells in the developing embryo start out as part of the future central nervous system, but leave to populate peripheral parts of the body," says Marianne Bronner, the Albert Billings Ruddock Professor of Biology at Caltech and corresponding author of the paper, published in the November 1 issue of the journal Genes & Development. "In this paper, we find that an important type of enzyme called DNA-methyltransferase, or DNMT, acts as a switch, determining which cells will remain part of the central nervous system, and which will become neural crest cells."

According to Bronner, DNMT arranges this transition by silencing expression of the genes that promote central nervous system (CNS) identity, thereby giving the cells the green light to become neural crest, migrate, and do new things, like help build a jaw bone. The team came to this conclusion after analyzing the actions of one type of DNMTDNMT3Aat different stages of development in a chicken embryo.

This is important, says Bronner, because while most scientists who study the function of DNMTs use embryonic stem cells that can be maintained in culture, her team is "studying events that occur in living embryos as opposed to cells grown under artificial conditions," she explains.

"It is somewhat counterintuitive that this kind of shutting off of genes is essential for promoting neural crest cell fate," she says. "Embryonic development often involves switches in the types of inputs that a cell receives. This is an example of a case where a negative factor must be turned offessentially a double negativein order to achieve a positive outcome."

Bronner says it was also surprising to see that an enzyme like DNMT has such a specific function at a specific time. DNMTs are sometimes thought to act in every cell, she says, yet the researchers have discovered a function for this enzyme that is exquisitely controlled in space and time.

"It is amazing how an enzyme, at a given time point during development, can play such a specific role of making a key developmental decision within the embryo," says Na Hu, a graduate student in Bronner's lab and lead author of the paper. "Our findings can be applied to stem cell therapy, by giving clues about how to engineer other cell types or stem cells to become neural crest cells."

Bronner points out that their work relates to the discovery, which won a recent Nobel Prize in Medicine or Physiology, that it is possible to "reprogram" cells taken from adult tissue. These induced pluripotent stem (iPS) cells are similar to embryonic stem cells, and many investigators are attempting to define the conditions needed for them to differentiate into particular cell types, including neural crest derivatives.

"Our results showing that DNMT is important for converting CNS cells to neural crest cells will be useful in defining the steps needed to reprogram such iPS cells," she says. "The iPS cells may in turn be useful for repair in human diseases such as familial dysautonomia, a disease in which there is depletion of autonomic and sensory neurons that are neural crestderived; for repair of jaw bones lost in osteonecrosis; and for many other potential treatments."

In the short term, the team will explore the notion that DNMT enzymes may have different functions in the embryo at different places and times. That's why the next step in their research, says Bronner, is to examine the later role of these enzymes in nervous-system development, like whether or not they effect the length of time during which the CNS is able to produce neural crest cells.


'/>"/>

Contact: Caltech Media Relations
mr@caltech.edu
California Institute of Technology
Source:Eurekalert  

Related biology news :

1. Distinct developmental patterns identified in children with autism during their first 3 years
2. Environmental estrogens affect early developmental activity in zebrafish
3. MARC travel awards announced for the Society for Developmental Biology 71st Annual Meeting
4. Mice with big brains provide insight into brain regeneration and developmental disorders
5. New genes contributing to autism and related neurodevelopmental disorders uncovered
6. Biophysicists unravel secrets of genetic switch
7. Viruses with integrated gene switch
8. Controlling gene expression with hydrogen peroxide switches
9. Finished heart switches stem cells off
10. SMOS satellite measurements improve as ground radars switch off
11. Relative reference: Foxtail millet offers clues for assembling the switchgrass genome
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Developmental bait and switch
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software as ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and video ... trial team. , Using the CONSULT module, patients and physicians can schedule a face ...
(Date:6/27/2016)... --  Ginkgo Bioworks , a leading organism design ... awarded as one of the World Economic Forum,s ... innovative companies. Ginkgo Bioworks is engineering biology to ... in the nutrition, health and consumer goods sectors. ... including Fortune 500 companies to design microbes for ...
(Date:6/24/2016)... ... , ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical ... mesothelioma. Their findings are the subject of a new article on the Surviving Mesothelioma ... in the blood, lung fluid or tissue of mesothelioma patients that can help point ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
Breaking Biology Technology: