Navigation Links
Despite damage, membrane protein structure can be seen using new X-ray technology, study reveals

Australian researchers have identified a way to measure the structure of membrane proteins despite being damaged when using X-ray Free-Electron Lasers (XFELs), a discovery that will help fast track the development of targeted drugs using emerging XFELs technology.

About 70% of drugs on the market today depend on the activity of membrane proteins, which are complex molecules that form the membranes of the cells in our body.

A major problem for the design of new pharmaceuticals, often known as the "membrane protein problem", is that they do not form the crystals needed to enable further investigation of the structure to design better drugs.

A major international effort is being mounted to determine the structures of membrane proteins using XFELs - large facilities that create such a bright beam of X-rays it is possible to see the X-ray light bouncing off a single molecule without forming a crystal.

Professor Keith Nugent, Laureate Professor and ARC Federation Fellow and Director of the Australian Research Council Centre of Excellence for Coherent X-ray Science (CXS) at the University of Melbourne said a key problem was that the light from an XFEL was so bright a molecule would start to disintegrate in less than one thousandth of a millionth of a millionth of a second.

In a paper published today in the journal Nature Physics, Professor Nugent and Associate Professor Harry Quiney from the ARC Centre of Excellence for Coherent X-ray Science (CXS) have developed a method by which the damage from the XFEL pulse may be included in the data analysis.

Associate Professor Quiney, also of the School of Physics at the University of Melbourne, said results showed that high-resolution molecular structures may be obtained from X-ray scattering data using a few-femtosecond pulse from an XFEL, even if the interaction resulted in significant electronic damage to the target.

"This result has far-reaching implications for the future development of structural biology, because it removes a significant obstacle to the practical realisation of the molecular microscope using XFEL sources," he said.

It also provides important insights into the complex, turbulent and poorly-understood interactions that are driven by the interaction of an XFEL pulse with an atom, molecule or solid.

Their approach uses sophisticated molecular physics and careful data analysis to determine a new approach to measuring molecular structure.

Although still at the theoretical and computation level when put into practice this discovery will remove a major road-block in the path to solving the membrane protein problem.

This year, CXS signed an agreement with Japanese colleagues and will host the 4th Asia-Oceania Workshop on Science with X-ray Free Electron Lasers in 2011.

Professor Nugent said this was an extremely exciting time for X-ray science.

"My colleagues and I are convinced that our recent work is a critically important step forward," he said.

"We are very much looking forward to working with our Japanese colleagues in the coming years".

The first XFEL started operating at Stanford in California in 2009 and the second, the SPring8 facility in Japan, will start in 2011. A third is under construction in Europe to commence in 2014.


Contact: Diane Squires
University of Melbourne

Related biology news :

1. Forest pests accumulating despite regulations
2. Racial differences in breast cancer treatment persist despite similar economics
3. Despite countless changes, original HIV infection lurks within
4. Pesky aphid thrives despite weak immune system
5. Despite risk, older African-Americans more likely than others to avoid flu vaccine
6. Despite claims, UK did not gas Iraqis in the 1920s, new research finds
7. Birds in Flint Hills of Kansas, Oklahoma face population decline despite large habitat
8. Organic soils continue to acidify despite reduction in acidic deposition
9. Despite peacenik reputation, bonobos hunt and eat other primates too
10. When it comes to brain damage, blankets take the place of drugs
11. UT Southwestern researchers probe kidney damage, protection in lupus
Post Your Comments:
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... DIEGO , June 27, 2016  Sequenom, Inc. ... committed to enabling healthier lives through the development of ... Court of the United States ... courts that the claims of Sequenom,s U.S. Patent No. ... patent eligibility criteria established by the Supreme Court,s Mayo ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight ... solutions to the healthcare market. The company's primary focus is on new product ... marketing strategies that are necessary to help companies efficiently bring their products to ...
(Date:6/27/2016)... BOSTON , June 27, 2016   Ginkgo ... biology to industrial engineering, was today awarded as ... a selection of the world,s most innovative companies. ... at scale for the real world in the ... organism engineers work directly with customers including Fortune ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
Breaking Biology Technology: