Navigation Links
Desert woodrats switch one dietary poison for another
Date:4/7/2009

As the U.S. Southwest grew warmer between 18,700 and 10,000 years ago, juniper trees vanished from what is now the Mojave Desert, robbing woodrats of their favorite food.

Now biologists have narrowed the hunt for detoxification genes that let the rodents eat the toxic creosote bushes that replaced junipers.

"It was either eat it or move out," says biologist Denise Dearing of the University of Utah, lead author of a paper detailing the results, published on-line on April 7, 2009, in the journal Molecular Ecology.

"This is an excellent example of research that bridges the fields of ecology and physiology," says Mary Chamberlin, acting deputy division director of the National Science Foundation (NSF)'s Division of Integrative Organismal Systems, which funded the research.

"It underscores the importance of studying organismal biology in order to understand how animals may or may not adapt to changes in their ecosystems."

During the study, eight woodrats were captured from each of two western regions: the Mojave Desert and the cooler Great Basin. Rats from both areas were fed rabbit chow mixed with either creosote or juniper.

The scientists then scanned the rodents' genetic blueprints to look for active genes known as "biotransformation genes" because they produce liver enzymes to detoxify the poisons in creosote and the less-toxic juniper.

"We found 24 genes in woodrats from the Mojave Desert that could be key in allowing them to consume leaves from creosote bushes," Dearing says. "The leaves are coated with a toxic resin that can comprise up to 24 percent of the dry weight of the plant."

She conducted the study because "we don't really know how herbivores can feed on toxic diets. If we can understand it, we may be able to learn how they will deal with climate change.

"For example, the toxins in creosote could respond to increases in atmospheric carbon dioxide," she says. "The plants may make more toxins under increased carbon dioxide conditions."

Even with detoxification genes, creosote bush is so toxic the woodrats can eat only so much. When they eat it exclusively, in winter, they lose weight. In spring, they gain weight when they also eat other plants.

Juniper is also toxic, but not as much as creosote bush.

Before creosote came to the Southwest from South America, woodrats ate juniper throughout what is now the Great Basin of Utah and Nevada and the Mojave Desert of southwestern Utah, southern Nevada and inland southeastern California.

But things changed as the last Ice Age waned.

As the glaciers receded, creosote bush invaded. The Southwestern deserts formed as the land became hotter and drier, and creosote bush replaced juniper trees in those areas.

Dearing says that as creosote invaded, some woodrats already had genes to let them eat creosote, or there was a mutation in existing detoxification genes that allowed for creosote consumption.

Over time, Mojave woodrats with those genes were more likely to survive on creosote, while those in the Great Basin stuck to juniper.


'/>"/>

Contact: Cheryl Dybas
cdybas@nsf.gov
703-292-7734
National Science Foundation
Source:Eurekalert  

Related biology news :

1. UNCCD recognizes importance of satellites for combating desertification
2. Tiny dust particles from Asian deserts common over western United States
3. Small desert beetle found to engineer ecosystems
4. Geology and biology meet in the history of US southwestern desert surface waters
5. Switching goals
6. Researchers find signal that switches on eye development -- could lead to eye in a dish
7. Researchers identify how to switch off cancer cell genes
8. Leading cause of death in preemies might be controlled by resetting a molecular switch
9. Why the switch stays on
10. Electronic switch opens doors in rheumatoid joints
11. Search for the on switches may reveal genetic role in development and disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Desert woodrats switch one dietary poison for another
(Date:4/18/2017)... Inc., a global expert in SoC-based imaging and computing solutions, has ... features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® ... be showcased during the upcoming Medtec Japan at Tokyo Big Sight ... Las Vegas Convention Center April 24-27. ... Click here for an image of the ...
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... Oct. 11, 2017  VMS BioMarketing, a leading provider of ... oncology Clinical Nurse Educator (CNE) network, which will launch this ... communication among health care professionals to enhance the patient care ... staff, and other health care professionals to help women who ... ...
Breaking Biology Technology: