Navigation Links
Dendritic cell therapy improves kidney transplant survival, Pitt team says
Date:6/28/2013

PITTSBURGH, June 28, 2013 -- A single systemic dose of special immune cells prevented rejection for almost four months in a preclinical animal model of kidney transplantation, according to experts at the University of Pittsburgh School of Medicine. Their findings, now available in the online version of the American Journal of Transplantation, could lay the foundation for eventual human trials of the technique.

Organ transplantation has saved many lives, but at the cost of sometimes lifelong requirements for powerful immunosuppressive medication that can have serious side effects, said senior investigator Angus Thomson, Ph.D., D.Sc., distinguished professor of surgery and of immunology, Pitt School of Medicine. Scientists have long sought ways to encourage the organ recipient's immune system to accept or tolerate the donor organ to reduce the need for drugs to stave off rejection.

"This study shows it is possible to prepare the patient's immune system for a donor kidney by administering specially treated immune cells from the donor in advance of the transplant surgery," Dr. Thomson said. "This could be very helpful in the context of planned kidney donations from living relatives, and could one day be adapted to transplantation from deceased donors."

For the project, the research team generated immune cells called dendritic cells (DCs) from the blood of rhesus macaques that would later provide a kidney to recipient monkeys. Dendritic cells are known to be key regulators of the immune system by showing antigens to T-cells to either activate them against the foreign protein or to suppress the T-cell response. The researchers treated the donor DCs in the lab to prevent them from fully maturing and having the capacity to trigger an immune reaction against foreign proteins.

One week before having a kidney transplant, recipient monkeys received a single infusion of treated DCs obtained from their respective donor animals. Another group of monkeys was transplanted without receiving the cells, but both groups were given the same regimen of immunosuppression drugs, a modified protocol for experimental purposes that eventually results in donor organ rejection. The researchers found that the donor kidney was rejected in about 40 days among animals that got only the drugs, but survived for about 113 days in the group that had a prior infusion of treated DCs.

The modified donor DCs sent signals to the recipient immune system to stay quiet and not launch an attack against the donor organ, explained lead author Mohamed Ezzelerab, M.D., research assistant professor, Department of Surgery, Pitt School of Medicine.

"The results indicate that we achieved immune system regulation without side effects of the DCs, but better yet, the monkeys were healthier from a clinical perspective," he said. "They maintained a better weight, had less protein in the urine and fewer signs of kidney damage than the other group. Ultimately, all these factors played a role in prolonging organ survival in the group that received DC therapy."


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-578-9193
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. No danger of cancer through gene therapy virus
2. An article in Cell reveals a new resistance mechanism to chemotherapy in breast and ovarian cancer
3. New sickle cell anemia therapy advances to Phase II clinical trials
4. Posttraumatic stress disorder treatment: Genetic predictor of response to exposure therapy
5. Mount Sinai discovers new liver cell for cellular therapy to aid in liver regeneration
6. New Research: Modified Citrus Pectin - A Potent Anti-Cancer Therapy
7. Researchers reveal new more precise method of performing electroconvulsive therapy
8. Discovery may help prevent chemotherapy-induced anemia
9. Penn receives prestigious national award for breakthrough in gene therapy
10. Icy therapy spot treats cancer in the lung
11. New therapy for fragile X chromosome syndrome discovered
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
(Date:3/29/2016)... RATON, Florida , March 29, 2016 ... or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are ... DNA in ink used in a variety of writing ... theft. Buyers of originally created collectibles from athletes on ... through forensic analysis of the DNA. ...
Breaking Biology News(10 mins):
(Date:5/26/2016)... (PRWEB) , ... May 26, 2016 , ... ... manufacturing company, today announced several positive developments that position the Company for the ... result of the transaction, Craig F. Kinghorn has been appointed Chairman of the ...
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... ... Michael Fitzmaurice recently became double board-certified in surgery and surgery of the hand ... Dr. Fitzmaurice is no stranger to going above and beyond in his pursuit ...
(Date:5/25/2016)... ... May 25, 2016 , ... Biohaven Pharmaceutical Holding ... has granted the company’s orphan drug designation request covering BHV-4157 for the treatment ... by the FDA. , Spinocerebellar ataxia is a rare, debilitating neurodegenerative disorder ...
(Date:5/23/2016)... ... ... need for blood donations in South Texas and across the nation is growing. , But ... blood donations are on the decline. In fact, donations across the country are at their ... Texas in the last four years alone. , There is no substitute for blood. , ...
Breaking Biology Technology: