Navigation Links
Deep sea methane scavengers captured
Date:5/14/2008

Leipzig / Pasadena. Scientists of the Helmholtz Centre for Environmental Research (UFZ) in Leipzig and the California Institute of Technology (Caltech) in Pasadena succeeded in capturing syntrophic (means "feeding together") microorganisms that are known to dramatically reduce the oceanic emission of methane into the atmosphere. These microorganisms that oxidize methane anaerobically are an important component of the global carbon cycle and a major sink for methane on Earth. Methane -- a more than 20 times stronger greenhouse gas than carbon dioxide -- constantly seeps out large methane hydrate reservoirs in the ocean floors, but 80 percent of it are immediately consumed by these microorganisms. The importance of the anaerobic oxidation of methane for the Earth's climate is known since 1999 and various international research groups work on isolating the responsible microorganisms, so far with little success. Pernthaler and co-workers developed a new molecular technique to selectively separate these microorganisms from their natural complex community, and subsequently sequenced their genome. The findings were exciting: Besides identifying all genes responsible for the anaerobic oxidation of methane, new bacterial partners of this syntrophic association were discovered and the ability to fix N2 could be demonstrated. The work has been published in the current issue of the renowned Journal Proceedings of the National Academy of Sciences (PNAS).

The beauty of small things revealed

Microorganisms are the unseen majority on our planet: There are more than 100 Million times more microbial cells than stars in the visible universe, accounting for more than 90 percent of the Earth's biomass. Yet, we have little idea what most of these bacteria and archaea are doing. It is not only their small size that makes them hard to study. Most microorganisms can not be grown, and thus studied, in the lab. But recent developments of new molecular techniques allow the study of microorganisms where they live: In nature. This is leading to an explosion of knowledge with no end in sight. One of these techniques is genome sequencing - learning about the genetic make-up of an organism. This works well for single organisms, such as the sequencing of the human genome. The complexity of natural microbial communities, however, is a major problem. The vast collection of genes can often not be linked to an organism or a physiological process. This plenitude of general information can be compared to a one-billion pieces puzzle of which you own only 300 pieces and you have to try to find out where which piece belongs and how the whole picture could look like.

Scientist at UFZ and Caltech now developed a method that solves this problem. Pernthaler and co-workers attached small ironbeads to the microorganisms of interest and pulled them out of the deep sea sediment by simply applying a magnet. These microbes are Archaea, which cooperate with sulfate reducing Bacteria to perform a thermodynamically tricky process: the anaerobic oxidation of methane (AOM). These poorly understood consortia are globally distributed in oceanic sediments above methane hydrates and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. After sequencing the genomes of the purified syntrophic consortia, Pernthaler and co-workers could find all genes responsible for AOM. The scientist also discovered an unexpected diversity in the bacterial partners of this syntrophic association, which may play a role in the performance of AOM. Pernthaler and co-workers also found genes for N2 fixation and demonstrated in lab experiments that the AOM archaea are indeed fixing N2. These results are intriguing, especially since the fixation of N2 is energetically expensive processes and the energy gained by AOM is low. The potential for metabolic versatility combined with the ability to form partnerships with other microorganisms, might be the secret to the successful distribution of this biogeochemically significant group of microorganisms. This work is being published in PNAS, May 13th, 2008, the method has been patented (Pernthaler A, Orphan VJ (2007) US Patent 11/746,374).


'/>"/>

Contact: Tilo Arnhold
presse@ufz.de
49-341-235-1635
Helmholtz Association of German Research Centres
Source:Eurekalert  

Related biology news :

1. Paired microbes eliminate methane using sulfur pathway
2. Scientists find good news about methane bubbling up from the ocean floor
3. Methane from microbes: a fuel for the future
4. Critically endangered Amur leopard captured
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Deep sea methane scavengers captured
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
(Date:3/21/2016)... Unique technology combines v ... security   Xura, Inc. ... digital communications services, today announced it is working alongside ... customers, particularly those in the Financial Services Sector, the ... within a mobile app, alongside, and in combination with, ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... 2016 According to a ... "Separation Systems for Commercial Biotechnology Market - Global ... 2015 - 2023", the separation systems for commercial ... in 2014 and is projected to expand at ... to reach US$ 19,227.8 Mn in 2023. ...
(Date:4/28/2016)... PUNE, India , April 28, 2016 ... PT, JT, Stirling, and Brayton Cryocoolers), Service (Technical Support, ... Application, and Geography - Global Forecast to 2022", published ... to USD 2.94 Billion by 2022, at a CAGR ... Browse 70 market data Tables and 94 Figures spread ...
(Date:4/28/2016)... ... April 28, 2016 , ... Morris Midwest ... house for regional manufacturers at its Maple Grove, Minnesota technical center, May 11-12. ... Chiron and Trumpf. Almost 20 leading suppliers of tooling, accessories, software and ...
(Date:4/27/2016)... , April 27, 2016 ... (CSE: NSK) (OTCPink: NSKQB) ( Frankfurt ... an ihre Pressemitteilung vom 13. August 2015 die ... ihre Finanzen um zusätzliche 200.000.000 Einheiten auf 400.000.000 ... Dollar zu bringen. Davon wurden 157.900.000 Einheiten mit ...
Breaking Biology Technology: