Navigation Links
Deep sea methane scavengers captured
Date:5/14/2008

Leipzig / Pasadena. Scientists of the Helmholtz Centre for Environmental Research (UFZ) in Leipzig and the California Institute of Technology (Caltech) in Pasadena succeeded in capturing syntrophic (means "feeding together") microorganisms that are known to dramatically reduce the oceanic emission of methane into the atmosphere. These microorganisms that oxidize methane anaerobically are an important component of the global carbon cycle and a major sink for methane on Earth. Methane -- a more than 20 times stronger greenhouse gas than carbon dioxide -- constantly seeps out large methane hydrate reservoirs in the ocean floors, but 80 percent of it are immediately consumed by these microorganisms. The importance of the anaerobic oxidation of methane for the Earth's climate is known since 1999 and various international research groups work on isolating the responsible microorganisms, so far with little success. Pernthaler and co-workers developed a new molecular technique to selectively separate these microorganisms from their natural complex community, and subsequently sequenced their genome. The findings were exciting: Besides identifying all genes responsible for the anaerobic oxidation of methane, new bacterial partners of this syntrophic association were discovered and the ability to fix N2 could be demonstrated. The work has been published in the current issue of the renowned Journal Proceedings of the National Academy of Sciences (PNAS).

The beauty of small things revealed

Microorganisms are the unseen majority on our planet: There are more than 100 Million times more microbial cells than stars in the visible universe, accounting for more than 90 percent of the Earth's biomass. Yet, we have little idea what most of these bacteria and archaea are doing. It is not only their small size that makes them hard to study. Most microorganisms can not be grown, and thus studied, in the lab. But recent developments of new molecular techniques allow the study of microorganisms where they live: In nature. This is leading to an explosion of knowledge with no end in sight. One of these techniques is genome sequencing - learning about the genetic make-up of an organism. This works well for single organisms, such as the sequencing of the human genome. The complexity of natural microbial communities, however, is a major problem. The vast collection of genes can often not be linked to an organism or a physiological process. This plenitude of general information can be compared to a one-billion pieces puzzle of which you own only 300 pieces and you have to try to find out where which piece belongs and how the whole picture could look like.

Scientist at UFZ and Caltech now developed a method that solves this problem. Pernthaler and co-workers attached small ironbeads to the microorganisms of interest and pulled them out of the deep sea sediment by simply applying a magnet. These microbes are Archaea, which cooperate with sulfate reducing Bacteria to perform a thermodynamically tricky process: the anaerobic oxidation of methane (AOM). These poorly understood consortia are globally distributed in oceanic sediments above methane hydrates and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. After sequencing the genomes of the purified syntrophic consortia, Pernthaler and co-workers could find all genes responsible for AOM. The scientist also discovered an unexpected diversity in the bacterial partners of this syntrophic association, which may play a role in the performance of AOM. Pernthaler and co-workers also found genes for N2 fixation and demonstrated in lab experiments that the AOM archaea are indeed fixing N2. These results are intriguing, especially since the fixation of N2 is energetically expensive processes and the energy gained by AOM is low. The potential for metabolic versatility combined with the ability to form partnerships with other microorganisms, might be the secret to the successful distribution of this biogeochemically significant group of microorganisms. This work is being published in PNAS, May 13th, 2008, the method has been patented (Pernthaler A, Orphan VJ (2007) US Patent 11/746,374).


'/>"/>

Contact: Tilo Arnhold
presse@ufz.de
49-341-235-1635
Helmholtz Association of German Research Centres
Source:Eurekalert  

Related biology news :

1. Paired microbes eliminate methane using sulfur pathway
2. Scientists find good news about methane bubbling up from the ocean floor
3. Methane from microbes: a fuel for the future
4. Critically endangered Amur leopard captured
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Deep sea methane scavengers captured
(Date:5/20/2016)...  VoiceIt is excited to announce its new ... By working together, VoiceIt and VoicePass will offer ... take slightly different approaches to voice biometrics, collaboration ... usability. Both ... "This marketing and technology partnership allows ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com , ... published the overview results from the Q1 wave of ... recent wave was consumers, receptivity to a program where ... with a health insurance company. "We were ... share," says Michael LaColla , CEO of Troubadour ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
Breaking Biology News(10 mins):
(Date:5/18/2016)... ... May 18, 2016 , ... Tech Coast Angels ... Award to Cognition Therapeutics at the annual ACA Summit last week in Philadelphia. ... by one of ACA’s member angel groups. It is the highest honor available for ...
(Date:5/18/2016)... ... May 18, 2016 , ... STACS DNA Inc., the sample tracking software company, ... sexual assault kit processing to help them save time and reduce errors. , Sexual ... to be processed and victims informed of results. Due to a previous lack of ...
(Date:5/18/2016)... (PRWEB) , ... May 18, 2016 , ... Ryan Benton ... a life expectancy in the late teens to early twenties. DMD is a relatively ... 2009, at the age of 22, Benton’s condition was critical. He met with the ...
(Date:5/17/2016)... , ... May 17, 2016 , ... ... and BioSmartSA, a healthcare consultancy based in Saudi Arabia, have formed a partnership ... to healthcare providers in the Kingdom of Saudi Arabia (KSA). , The ...
Breaking Biology Technology: