Navigation Links
Deciphering the role of fat stem cells in obesity and diabetes
Date:5/21/2014

With three million people dying worldwide each year as a direct result of being overweight or obese, a new study will look at stem cells to pinpoint how excess fat is stored potentially paving the way for new treatments to combat killer diseases associated with obesity.

The ground-breaking research is thanks to an international collaboration between the University of Bristol and the Anti-Doping Laboratory Qatar. The three year project has received around 536,000 funding from the Qatar National Research Fund (QNRF).

Authorities in Qatar are keen to take action as obesity in the country has increased seven fold in the last 20 years, with 70 per cent of the population now classified as overweight. This puts them at greater risk of suffering from serious health issues such as diabetes, cancer and heart disease.

Researchers from the University of Bristol will specifically look at two groups of obese patients those which have a normal response to insulin and those who have an increased risk of developing type 2 diabetes.

They want to shed light on the mechanism underlying the association between increased fat build-up and how the body responds to insulin.

Recent interest has focused on trying to stratify obesity into groups with varying degrees of disease risk. By understanding the mechanisms that underlie these differences, the most appropriate therapeutic strategies can be adopted for treating these different groups.

Dr Wael Kafienah, from the University of Bristol's School of Cellular and Molecular Medicine, explained: "We know that around 30 per cent of obese patients do not develop diabetes and are metabolically healthy. We want to find out what's happening at a molecular level to establish why some obese people have a level of protection against serious problems such as diabetes, coronary artery disease, cancer and heart disease.

"We suspect that the origins of the problem can be traced to early events taking place in the stem cells that replenish fat cells. What we discover may be shared mechanistically with other tissues in the body, which could potentially lead to treatments for other diseases associated with obesity."

Researchers in Qatar, led by Dr Mohamed Elrayess from ADLQ, will isolate stem cells from fat tissue biopsies taken from various anatomical locations in patients undergoing weight reduction surgery and send them over to the University of Bristol for further analysis.


'/>"/>

Contact: Philippa Walker
philippa.walker@bristol.ac.uk
44-117-928-8086
University of Bristol
Source:Eurekalert  

Related biology news :

1. Deciphering bacterial doomsday decisions
2. Major breakthrough in deciphering bread wheats genetic code
3. Deciphering the secret of the sugar beet
4. Tortoise and the hare: New drug stops rushing cancer cells, slow and steady healthy cells unharmed
5. Stem cells can repair a damaged cornea
6. Scientists produce eye structures from human blood-derived stem cells
7. Study demonstrates cells can acquire new functions through transcriptional regulatory network
8. Epigenetic signatures direct the repair potential of reprogrammed cells
9. Researchers print live cells with a standard inkjet printer
10. Nanopills release drugs directly from the inside of cells
11. Protein jailbreak helps breast cancer cells live
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Deciphering the role of fat stem cells in obesity and diabetes
(Date:4/11/2017)... 11, 2017 Research and Markets has announced ... report to their offering. ... global eye tracking market to grow at a CAGR of 30.37% ... Tracking Market 2017-2021, has been prepared based on an in-depth market ... landscape and its growth prospects over the coming years. The report ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... , ... October 09, 2017 , ... At its national ... Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has been ... a member of the winning team for the 2015 Breakthrough Prize in Fundamental physics ...
(Date:10/9/2017)... (PRWEB) , ... October 09, ... ... published on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s ... the gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using ...
(Date:10/7/2017)... ... October 06, 2017 , ... Phase ... metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers can ... Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ProxiMeta ...
(Date:10/6/2017)... ... October 06, 2017 , ... The ... and technology sector at their fourth annual Conference where founders, investors, innovative practitioners ... and the ELEVATE pitch competition showcasing early stage digital health and med tech ...
Breaking Biology Technology: