Navigation Links
Deceiving cell walls
Date:1/28/2009

This release is available in German.

Approximately 1.6 million people die worldwide every year as a result of pneumococcal infection, which causes grave illnesses, including pneumonia, meningitis, and middle-ear infections. Children and the elderly are especially at risk. Vaccines are only effective against a few of the pneumococcal types and increasing resistance to antibiotics is making treatment more difficult. Researchers led by Jess M. Sanz at the Miguel Hernandez University (Elche, Spain) and Maarten Merkx at the Eindhoven University of Technology (Netherlands) have now introduced a highly promising new approach for the development of drugs to treat pneumococci. As they report in the journal Angewandte Chemie, the scientists copied the choline architecture of the pneumococcal cell wall. They were thus able to trap the choline-binding proteins that have a critical effect on the infectiousness of pneumococcal bacteria.

The cell walls of pneumococci contain special polymers, called teichoic acids, that are equipped with phosphocholine groups and induce a characteristic choline architecture on the cell walls. The choline groups act as docking stations for a number of special proteins that are involved in important processes such as cell-wall division, the release of bacterial toxins, and adhesion to infected tissues. These choline-binding proteins (CBP) contain domains with multiple neighboring choline-binding sites. The protein LytA, for example, has a domain with four choline-binding sites.

If choline is added to a culture of pneumococci, the molecules occupy the choline binding sites of the CBPs so that the proteins can no longer bind to the cell walls of the pneumococci. Although the bacteria continue to multiply, the individual cells can no longer separate from each other, which results in long chains of linked cells. In addition, the toxin-releasing self-destruction (autolysis) typical of pneumococci at the end of their life cycle is stopped.

However, choline is not suitable for use as a drug because an effective dose would be far too high. The researchers thus developed the foundation for a new drug that binds CBP much more strongly than individual choline molecules. Their trick: the drug imitates the choline architecture of the cell wall by presenting multiple choline groups. As a scaffold for their assembly of choline groups, the researchers chose to use dendrimers (tree-like branched molecules), attaching the choline groups to the tips of the "branches". The choline ends can simultaneously occupy multiple choline binding sites of the CBP. The dendrimer frameworks are flexible enough to meet the spatial demands of the application. The required dosage of this CBP inhibitor lies within the range that is acceptable for pharmaceuticals.


'/>"/>

Contact: Jess M. Sanz
jmsanz@umh.es
34-966-658-460
Wiley-Blackwell
Source:Eurekalert  

Related biology news :

1. [video] Michael DePasquale, CEO of BIO-key International, Inc., Discusses Q2 2008 Revenue Growth on WallSt.nets 3-Minute Press Show
2. Slipping through cell walls, nanotubes deliver high-potency punch to cancer tumors in mice
3. Did termites help Katrina destroy New Orleans floodwalls?
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Deceiving cell walls
(Date:6/21/2016)... Columbia , June 21, 2016 ... to the new role of principal product architect ... named the director of customer development. Both will ... chief technical officer. The moves reflect NuData,s strategic ... in response to high customer demand and customer ...
(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
Breaking Biology Technology: