Navigation Links
Deadly liver cancer may be triggered by cells changing identity, UCSF study shows
Date:7/16/2012

A rare type of cancer thought to derive from cells in the bile ducts of the liver may actually develop when one type of liver cell morphs into a totally different type, a process scientists used to consider all but impossible. UCSF researchers triggered this kind of cellular transformationand caused tumors to form in miceby activating just two genes. Their discovery suggests that drugs that are able to target those genes may provide a way to treat the deadly cancer, known as cholangiocarcinoma. It also shows, yet again, how the process of scientific discovery involves serendipity as well as skill.

The study appears as an advanced online publication July 16, 2012 in the Journal of Clinical Investigation and will appear later in the August print edition.

The two cell types, hepatocytes and biliary cells, exist side by side in the liver, but don't normally change their "stripes" -- their cellular function -- let alone turn into each other. Scientists have therefore assumed that hepatocellular carcinomas, the most common kind of liver cancer, start in the hepatocytes and that cholangiocarcinomas, the bile duct cancers, start in the biliary cells.

Hepatocytes, which form the bulk of the liver, "are very good at making other hepatocytes," said Holger Willenbring, PhD, an associate professor of surgery, a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, and a senior author of the study. "They can divide many times but are restricted in the progeny they produce. They either produce more hepatocytes or, if something goes wrong, can cause hepatocellular carcinomas."

The study started when Xin Chen, PhD, an assistant professor of bioengineering and therapeutic sciences and a senior author of the manuscript, tried to make something go wrong in the hepatocytes as a way to explore the origins of hepatocellular carcinoma. Chen and her group hoped to induce the cancer in mice by activating oncogenes, genes that trigger cancer.

Things did go awry in the hepatocytes -- but not in the way the researchers expected. In specific conditions, mice developed cholangiocarcinoma instead of hepatocellular carcinoma. "We were very surprised," Chen recalls. They asked, "How did that happen?"

The two scientists figured some of the genes they had activated might have reprogrammed the hepatocytes in a way that turned them into aberrant biliary cells, capable of forming tumors. Their chief suspects were two genes, NOTCH, which is known to be involved in the embryonic development of bile ducts, and AKT, which has been shown to play a role in many tumors.

The scientists used bits of bacterial DNA called plasmids as delivery vehicles to boost levels of NOTCH and AKT in the liver. Three-and-a-half weeks after injecting these plasmids into mice, small white growths appeared on the surface of their livers and, by five weeks, the tumors had spread through the liver. Now the scientists needed to trace the origins of these cancer cells.

Willenbring's lab had previously developed a method for labeling mouse hepatocytes so that they, and any cell they turned into, would glow. They put this "hepatocyte fate-tracing" system to work and were able to show that the cancerous cells that formed bile duct tumors had in fact started out as hepatocytes.

For many years, scientists had believed that development of cells proceeded in one direction, moving step-by-step from primordial stem cells to fully differentiated adult cells. In recent years, researchers have shown that, by turning on certain genes, mature cells can go back in time to become stem cells or even move sideways to become other kinds of adult cell.

"This highlights how readily one cell can be converted into another and how cancer can do it for you very efficiently," Willenbring said. "For us, it's fairly shocking. It only took two oncogenes and it all happened in a few weeks."

The findings also help explain another puzzle: why the incidence of bile duct cancer is higher in people with hepatitis. "Since hepatitis doesn't do anything to biliary cells that didn't quite make sense," Willenbring said

Now there's a new way to look at it, he suggests. As hepatocytes and their genomes become disarrayed by disease, Willenbring says, they may activate oncogenes in much the same way their experiment did, causing the cells to change identity and become cancerous.

Having shown that NOTCH and AKT are the triggers in this tumor-inducing process, Chen and her team are now hunting for therapies. Working with colleagues from Genentech Inc., they are testing antibodies that may blunt the activity of the genes and halt or reverse the growth of bile duct cancers in mice. "The preliminary results with the therapeutic antibodies are very encouraging," Chen says. If they find the right formula, they may have an answer for a currently untreatable cancer.


'/>"/>

Contact: Jennifer O'Brien
jennifer.obrien@ucsf.edu
415-502-6397
University of California - San Francisco
Source:Eurekalert

Related biology news :

1. Preserved frogs hold clues to deadly pathogen
2. As deadly cat disease spreads nationally, MU veterinarian finds effective treatment
3. Researchers find critical regulator to tightly control deadly pulmonary fibrosis
4. Weakness can be an advantage in surviving deadly parasites, a new study shows
5. Nanotherapy: Treating deadly brain tumors by delivering big radiation with tiny tools
6. Common North American frog identified as carrier of deadly amphibian disease
7. Elegant delivery
8. Cell Press journals continue to deliver high impact
9. Oligonucleotide Delivery: Biology, Engineering and Development Conference
10. OSCs Oakley Cluster delivers on performance efficiency
11. Light-induced delivery of nitric oxide eradicates drug-resistant bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... June 2, 2016   The Weather Company , an ... Ads, an industry-first capability in which consumers will be able ... to ask questions via voice or text and receive relevant ... Marketers have long sought an advertising solution ... can be personal, relevant and valuable; and can scale across ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is excited ... with VoicePass. By working together, VoiceIt ...  Because VoiceIt and VoicePass take slightly different approaches ... increases both security and usability. ... about this new partnership. "This marketing ...
(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, into ... for over 35 years, is proud to add Target to its list of ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... -- Houston Methodist Willowbrook Hospital has signed a ... serve as their official health care provider. As ... provide sponsorship support, athletic training services, and most ... athletes and families. "We are excited ... to bring Houston Methodist quality services and programs ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
Breaking Biology Technology: