Navigation Links
Daydreaming simulated by computer model

Scientists have created a virtual model of the brain that daydreams like humans do.

Researchers created the computer model based on the dynamics of brain cells and the many connections those cells make with their neighbors and with cells in other brain regions. They hope the model will help them understand why certain portions of the brain work together when a person daydreams or is mentally idle. This, in turn, may one day help doctors better diagnose and treat brain injuries.

"We can give our model lesions like those we see in stroke or brain cancer, disabling groups of virtual cells to see how brain function is affected," said senior author Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology at Washington University School of Medicine in St. Louis. "We can also test ways to push the patterns of activity back to normal."

The study is now available online in The Journal of Neuroscience.

The model was developed and tested by scientists at Washington University School of Medicine in St. Louis, Universitat Pompeu Fabra in Barcelona, Spain, and several other European universities including ETH Zurich, Switzerland; University of Oxford, United Kingdom; Institute of Advanced Biomedical Technologies, Chieti, Italy; and University of Lausanne, Switzerland.

Scientists first recognized in the late 1990s and early 2000s that the brain stays busy even when it's not engaged in mental tasks. Researchers have identified several "resting state" brain networks, which are groups of different brain regions that have activity levels that rise and fall in sync when the brain is at rest. They have also linked disruptions in networks associated with brain injury and disease to cognitive problems in memory, attention, movement and speech.

The new model was developed to help scientists learn how the brain's anatomical structure contributes to the creation and maintenance of resting state networks. The researchers began with a process for simulating small groups of neurons, including factors that decrease or increase the likelihood that a group of cells will send a signal.

"In a way, we treated small regions of the brain like cognitive units: not as individual cells but as groups of cells," said Gustavo Deco, PhD, professor and head of the Computational Neuroscience Group in Barcelona. "The activity of these cognitive units sends out excitatory signals to the other units through anatomical connections. This makes the connected units more or less likely to synchronize their signals."

Based on data from brain scans, researchers assembled 66 cognitive units in each hemisphere, and interconnected them in anatomical patterns similar to the connections present in the brain.

Scientists set up the model so that the individual units went through the signaling process at random low frequencies that had previously been observed in brain cells in culture and in recordings of resting brain activity.

Next, researchers let the model run, slowly changing the coupling, or the strength of the connections between units. At a specific coupling value, the interconnections between units sending impulses soon began to create coordinated patterns of activity.

"Even though we started the cognitive units with random low activity levels, the connections allowed the units to synchronize," Deco said. "The spatial pattern of synchronization that we eventually observed approximates very wellabout 70 percentto the patterns we see in scans of resting human brains."

Using the model to simulate 20 minutes of human brain activity took a cluster of powerful computers 26 hours. But researchers were able to simplify the mathematics to make it possible to run the model on a typical computer.

"This simpler whole brain model allows us to test a number of different hypotheses on how the structural connections generate dynamics of brain function at rest and during tasks, and how brain damage affects brain dynamics and cognitive function," Corbetta said.


Contact: Michael C. Purdy
Washington University School of Medicine

Related biology news :

1. Computer modeling technique goes viral at Brandeis
2. Computer simulations yield clues to how cells interact with surroundings
3. Computer model may help athletes and soldiers avoid brain damage and concussions
4. Computer modeling reveals how surprisingly potent hepatitis C drug works
5. New supercomputer to aid genomics research
6. New supercomputer coming to EMSL this summer, supplied by Atipa Technologies
7. Virginia Tech computer scientists develop new way to study molecular networks
8. Iowa State computer, electrical engineers working to help biologists cope with big data
9. How computers push on the molecules they simulate
10. Total donates high-speed computer cluster to UH
11. A better thought-controlled computer cursor
Post Your Comments:
(Date:11/20/2015)... , November 20, 2015 ... company focused on the growing mobile commerce market and ... Gino Pereira , was recently interviewed on ... will air on this weekend on Bloomberg Europe ... America . --> NXTD ) ("NXT-ID" or ...
(Date:11/17/2015)... 17, 2015 Paris from ... --> Paris from 17 th until ... biometrics innovation leader, has invented the first combined scanner in ... same scanning surface. Until now two different scanners were required: ... can capture both on the same surface. This innovation ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... Dr. Harry Lander , President of Regen, ... Chief Science Officer and recruits five distinguished scientists ... , President of Regen, expands his role to include ... five distinguished scientists to join advisory team --> ... to include serving as Chief Science Officer ...
(Date:11/30/2015)... ... ... Global Stem Cells Group announced that its scientific team is in the ... cells. The announcement starts a new phase toward launching the simple, quick system for ... lipoaspirate obtained from liposuction of excess adipose tissue. , Lipoaspirate, contains a large ...
(Date:11/30/2015)... Partnership includes an MPP licen ... niversity , s Solid Drug Nanoparticle (SDN) Technology ... up through cost cuts of priority ... licensees based anywhere in the world will have the right to make, use and ... , where licensees based anywhere in the world will have the right to make, ...
(Date:11/30/2015)... , ... November 30, 2015 , ... ... globally touring exhibition Jurassic World: The Exhibition, opening in March 2016 at Melbourne ... on a worldwide tour including several North American tour dates. The Exhibition is ...
Breaking Biology Technology: