Navigation Links
Dartmouth researchers describe how the cholera bacteria becomes infectious
Date:2/12/2010

HANOVER, NH In a new study, Dartmouth researchers describe the structure of a protein called ToxT that controls the virulent nature of Vibrio cholerae, the bacteria that causes cholera. Buried within ToxT, the researchers were surprised to find a fatty acid that appears to inhibit ToxT, which prevents the bacteria from causing cholera. Cholera, which causes acute diarrhea, can be life threatening, and, according to the World Health Organization, cholera remains a serious threat to global health.

Doctors have known that bile, found in the intestine, inhibits the expression of the virulence genes in V. cholerae, but until now, the mechanism behind this was not completely understood. This study provides a direct link between the environment of the gut and the regulation of virulence genes, and it also identifies the regulatory molecule.

"Finding a fatty acid in the structure was quite a surprise," says F. Jon Kull, associate professor of chemistry at Dartmouth and senior author on the paper. Kull is also a 1988 graduate of Dartmouth. "The exciting thing about this finding is that we might be able to use a small, natural molecule to treat and/or prevent cholera. We will also use the structure of the fatty acid as a framework to try and design a small molecule inhibitor of ToxT."

The study, "Structure of Vibrio cholerae ToxT reveals mechanism for fatty acid regulation of virulence genes," appeared in the online edition of the Proceedings of the National Academy of Sciences during the week of February 1.

Kull's co-authors on the paper are Michael Lowden and Maria Pellegrini with the Department of Chemistry at Dartmouth; Michael Chiorazzo, a summer undergraduate research fellow; and Karen Skorupski and Ronald Taylor with the Department of Microbiology and Immunology at Dartmouth Medical School.

The researchers used X-ray crystallography to determine the structure of ToxT. The process involves taking DNA from V. cholerae and using non-pathogenic E. coli bacteria to produce large amounts of the target protein, in this case, ToxT. Once protein has been purified, it is concentrated and crystallized. Then the crystal, which is an ordered array of protein molecules, is subjected to a powerful X-ray beam. The pattern of diffracted X-rays is collected on a detector and then analyzed using mathematical algorithms, eventually revealing the atomic structure of the protein.

Co-author Taylor also notes that "The results of the study are exciting from the points of view of both the mechanistic aspect of the complex regulation of V. cholerae virulence gene expression and the potential medical impact as we now move forward to apply this new knowledge to influence this mechanism to control infection in humans."


'/>"/>

Contact: Sue Knapp
sue.knapp@dartmouth.edu
603-646-3661
Dartmouth College
Source:Eurekalert

Related biology news :

1. Dartmouth researchers get personal with genetics
2. Dartmouth researchers find new protein function
3. Dartmouth workshop sets research agenda for environmental mercury
4. Dartmouth awarded NSF grant for new polar sciences, engineering grad program
5. Dartmouth researchers identify an important gene for a healthy, nutritious plant
6. Dartmouth researchers discover gene signatures for scleroderma
7. Dartmouth researchers find the root of the evolutionary emergence of vertebrates
8. Dartmouth researchers alarmed by levels of mercury and arsenic in Chinese freshwater ecosystem
9. Dartmouth researchers show effects of low dose arsenic on development
10. Researchers develop dietary formula that maintains youthful function into old age
11. Queens researchers propose rethinking renewable energy strategy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market ... Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast ... from USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... ... July 20, 2017 , ... VIC Technology Venture ... the company’s board of directors. This addition continues to strengthen and diversify VIC’s ... Goforth, CEO and Chairman. “He is a highly accomplished business executive with a broad ...
(Date:7/18/2017)... (PRWEB) , ... July 18, 2017 , ... ... that accelerate pharmaceutical and biotherapeutics development, announces the launch of a new NTA ... biosensor chip enables researchers to study the kinetics of polyhistidine-tagged (His-tagged) molecules quickly ...
(Date:7/18/2017)... ... July 18, 2017 , ... Allotrope Foundation ... the first phase of the Allotrope Framework for commercial use. , The Bio-IT ... to “not only elevate the critical role of information technology in modern biomedical ...
(Date:7/17/2017)... (PRWEB) , ... July 17, 2017 , ... ... equipment and analytical instruments announced the launch of its new line of Heavy-Duty ... orbital shaker models (both analog and digital) for laboratory applications. These shakers ...
Breaking Biology Technology: