Navigation Links
Daisies lead scientists down path to new leukemia drug

A new, easily ingested form of a compound that has already shown it can attack the roots of leukemia in laboratory studies is moving into human clinical trials, according to a new article by University of Rochester investigators in the journal, Blood.

The Rochester team has been leading the investigation of this promising therapy on the deadly blood cancer for nearly five years. And to bring it from a laboratory concept to patient studies in that time is very fast progress in the drug development world, said Craig T. Jordan, Ph.D., senior author of the Blood article and director of Translational Research for Hematologic Malignancies at the James P. Wilmot Cancer Center, at the University of Rochester Medical Center.

Clinical trials are expected to begin in England by the end of 2007. Investigators expect to initially enroll about a dozen adult volunteers whove been diagnosed with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) or other types of blood or lymph cancers, Jordan said.

Under development is dimethylamino-parthenolide (DMAPT), a form of parthenolide (PTL) that is derived from a daisy-like plant known as feverfew or bachelors button. DMAPT is a water-soluble agent that scientists believe will selectively target leukemia at the stem-cell level, where the malignancy is born. This is significant because standard chemotherapy does not strike deep enough to kill cancer at the roots, thus resulting in relapses. Even the most progressive new therapies, such as Gleevec, are effective only to a degree because they do not reach the root of the cancer.

DMAPT appears to be unique. Its mechanism of action is to boost the cancer cells reactive oxygen species which is like pushing the stress level of the cell over the edge to the point where the cell can no long protect itself and dies, said Monica L. Guzman, Ph.D., the lead researcher on the DMAPT project and a senior instructor at the University of Rochester Medical Center.

Leukemia is different from most cancers and particularly hard to eradicate because leukemia stem cells lie dormant. Standard cancer treatments are designed to seek out actively dividing cells. But in studies so far, DMAPT can kill both dormant cells and cells that are busy dividing, Guzman said

Rochester investigators looked at whether DMAPT could eliminate leukemia in donated human cells, and in mice and dogs. In all cases, DMAPT induced rapid death of AML stem and progenitor cells, without harming healthy blood cells.

DMAPT also has shown potential as a treatment for breast and prostate cancer, melanoma, and multiple myeloma, Guzman said, although those studies have only been conducted in cell cultures to date.

Once we begin seeing evidence from the clinical trials, it will give us more insight into the pharmacological properties of DMAPT and it will be easier to figure out its potential for other cancers, Guzman said.

In addition to the studies of DMAPT, Guzman and Jordan also reported in the same issue of Blood on another new type of leukemia drug known as TDZD-8. Although this agent is at a much earlier stage of development, it also shows the ability to kill leukemia stem cells and may some day lead to better forms of treatment.


Contact: Leslie Orr
University of Rochester Medical Center

Related biology news :

1. Wisconsin scientists grow critical nerve cells
2. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
3. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
4. UAB scientists discover the origin of a mysterious physical force
5. Fox Chase Cancer Center scientists identify immune-system mutation
6. Scientists Replicate Hepatitis C Virus in Laboratory
7. Scientists detect probable genetic cause of some Parkinsons disease cases
8. Scientists find missing enzyme for tuberculosis iron scavenging pathway
9. Scientists seek answers on what activates deadly anthrax spores
10. Yale Scientists Find MicroRNA Regulates Ras Cancer Gene
11. Scientists collaborate to assess health of global environment
Post Your Comments:
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
(Date:6/2/2016)... June 2, 2016 The Department of ... awarded the 44 million US Dollar project, for the ... Plates including Personalization, Enrolment, and IT Infrastructure , ... the production and implementation of Identity Management Solutions. Numerous renowned ... Decatur was selected for the most ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is excited ... with VoicePass. By working together, VoiceIt ...  Because VoiceIt and VoicePass take slightly different approaches ... increases both security and usability. ... about this new partnership. "This marketing ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/24/2016)... ... 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona combed ... pleural mesothelioma. Their findings are the subject of a new article on the Surviving ... signposts in the blood, lung fluid or tissue of mesothelioma patients that can help ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one ... of their brand, UP4™ Probiotics, into Target stores nationwide. The company, which has ... add Target to its list of well-respected retailers. This list includes such fine ...
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
Breaking Biology Technology: