Navigation Links
DOE researchers achieve important genetic breakthroughs to help develop cheaper biofuels
Date:12/22/2011

Washington D.C. Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important improvements across a range of industries, including the development of cheaper advanced biofuels. Scientists will use these new "RNA machines", to adjust genetic expression in the cells of microorganisms. This will enable scientists to develop new strains of Escherichia coli (E. coli) that are better able to digest switchgrass biomass and convert released sugars to form three types of transportation fuels gasoline, diesel and jet fuels.

"This is a perfect example of how our investments in basic science innovations can pave the way for future industries and solutions to our nation's most important challenges," said Energy Secretary Steven Chu. "This breakthrough at the Joint BioEnergy Institute holds enormous potential for the sustainable production of advanced biofuels and countless other valuable goods."

A breakthrough with E. coli could make it cheaper to produce fuel from switchgrass or other non-food biomass plants to create advanced biofuels with the potential to replace gasoline. While the work at JBEI remains focused on the development of advanced biofuels, JBEI's researchers believe that their concepts may help other researchers to develop many other desired products, including biodegradable plastics and therapeutic drugs. For example, some researchers have already started a project to investigate how to use the "RNA machines" to increase the safety and efficacy of medicine therapies to treat diseases, including diabetes and Parkinson's.

Biological systems are incredibly complex, which makes it difficult to engineer systems of microorganisms that will produce desired products in predictable amounts. JBEI's work, which will be featured in the December 23rd issue of Science magazine, is the first of its kind to set up and adjust a RNA system in a predictable way.

Specifically, researchers focused their design-driven approach on RNA sequences that can fold into complicated three dimensional shapes, called ribozymes and aptazymes. By using JBEI-developed computer-assisted models and simulations, researchers then created complex RNA-based control systems that are able to program a large number of genes. In microorganisms, "commands" that are sent into the cell will be processed by the RNA-based control systems, enabling them to help develop desired products.

One of the major goals of synthetic biology is to produce valuable chemical products from simple, inexpensive and renewable starting materials in a sustainable manner. Computer-assisted models and simulations like the one JBEI developed are essential for doing so. Up to this point, such tools for biology have been very limited and JBEI's breakthrough in applying computer assisted design marks an important technical and conceptual achievement for this field.


'/>"/>

Contact: Jeff Sherwood
jeff.sherwood@doe.gov
202-586-4940
DOE/US Department of Energy
Source:Eurekalert

Related biology news :

1. Drugs used to overcome cancer may also combat antibiotic resistance: McMaster researchers
2. Researchers develop new method of cleaning toxins from the oilsands
3. Researchers discover a way to significantly reduce the production costs of fuel cells
4. San Diego Zoo researchers contribute to project using mummy DNA to differentiate croc species
5. Researchers create living neon signs composed of millions of glowing bacteria
6. Georgetown researchers lead discovery expected to significantly change biomedical research
7. 4 UC Riverside researchers receive national recognition
8. Researchers assess effects of a world awash in nitrogen
9. Researchers explain what makes granular material become solid
10. London researchers lead innovative new cancer treatment study
11. Antioxidant has potential in the Alzheimers fight, UGA researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... , March 30, 2017  On April 6-7, ... Hack the Genome hackathon at Microsoft,s headquarters ... two-day competition will focus on developing health and wellness ... Hack the Genome is the first ... tremendous. The world,s largest companies in the genomics, tech ...
(Date:3/28/2017)... The report "Video Surveillance Market ... Storage Devices), Software (Video Analytics, VMS), and Service (VSaaS, ... to 2022", published by MarketsandMarkets, the market was valued ... to reach USD 75.64 Billion by 2022, at a ... year considered for the study is 2016 and the ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based and Touchless), ... published by MarketsandMarkets, the market is expected to be worth USD 18.98 billion ... Continue Reading ... ...      (Logo: ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... April 21, 2017 , ... The AMA is happy to announce ... from across the nation. The scholarships are created through funds donated by model aviation ... criteria are set by the AMA Scholarship Committee, which is made up of model ...
(Date:4/20/2017)... ... April 20, 2017 , ... ... strategic partnership to offer a full spectrum of digital security goods and services. ... biometric products and the ground-breaking proactive cybersecurity services and products through Assured Enterprises. ...
(Date:4/20/2017)... ... 2017 , ... NetDimensions appoints Bill Mastin, a learning technology veteran, as its ... in the learning technologies industry, Mastin joins NetDimensions from the New York office of ... At LEO, Mastin served as SVP of the North America offices and prior to ...
(Date:4/20/2017)... Minneapolis, MN and Bethesda, MD (PRWEB) , ... ... ... for Advancing Innovation announce the formation of a unique intellectual property (IP) sharing ... commercialization potential of their most promising inventions. A main component of this effort ...
Breaking Biology Technology: