Navigation Links
DNA sequencing uncovers secrets of white cliffs of Dover
Date:6/13/2013

The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature.

Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global climate for over 200 million years, so is used as a model system for studying how physical, chemical and biological processes regulate the Earth's systems. The algae form pale chalky cases called coccoliths which during the spring bloom can be seen from space in the seas around the UK. E. huxleyi directly links to climate change through the production of dimethylsulfide (DMS), which induces cloud formation and blocks solar radiation.

Thanks to new technology next generation DNA sequencing 13 different isolates were sequenced from around the world, and compared to a complete sequence constructed for E. huxleyi strain CCMP1516. The allowed the team to understand the influences of different environmental conditions on E. huxleyi physiology. The international team found that E. huxleyi possess a higher number of genes than previously published marine phytoplankton genomes, and that most genes were present in multiple copies.

Dr Mark Van Der Giezen from the University of Exeter said: "Using comprehensive analysis to compare different strains of the algae, we demonstrated that E. huxleyi should no longer be considered a single species. Substantial variation in the genome indicates contrasting metabolic composition and supports the idea that E. huxleyi is a species complex."

Comparing patterns, or phylogenetic relationships, in the genomes of the different strains identified three groups which did not relate to geographic origin nor genome size. Further research into the genomes revealed that the E. huxleyi genome includes core regions shared by all samples with some variable elements. Regions with high levels of tandem repeats and low complexity may have allowed rapid evolutionary adaptation over many millions of years, allowing current strains to live in a range of light conditions.

The study of the E. huxleyi genome shows many unexpected features that may be unique or common in microalgae warranting further investigation. For example, metabolic pathways, known previously only in fungi and animals that allow lipid synthesis were found. Using this new insight into an age-old algae, there is future potential for E. huxleyi to be used to synthesise nutritional supplements, biofuels, feedstock and polymer precursors, which may make E. huxleyi a valuable species for cutting-edge biotechnology.


'/>"/>

Contact: Jo Bowler
j.bowler@exeter.ac.uk
44-013-927-22062
University of Exeter
Source:Eurekalert

Related biology news :

1. Powerful sequencing technology decodes DNA folding pattern
2. Sequencing works in clinical setting to help -- finally -- get a diagnosis
3. The sequencing of the tomato genome
4. DNA Sequencing: Emerging Technologies and Applications
5. Next-generation sequencing technology opens doors to discoveries
6. University of North Texas Health Science Center Advances Forensic Research by Investing in Semiconductor DNA Sequencing Technology
7. Exome sequencing gives cheaper, faster diagnosis in heterogeneous disease
8. An error-eliminating fix overcomes big problem in 3rd-gen genome sequencing
9. Exome sequencing of health condition extremes can reveal susceptibility genes
10. New genomic sequencing method enables smarter anaysis of individual cells
11. US-Russian collaboration develops new method for sequencing dark matter of life from a single cell
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/4/2017)... LAS VEGAS , Jan. 4, 2017 /PRNewswire/ ... in performance biometric sensor technology, today announced the ... Benchmark™ sensor systems, the highly-accurate biometric sensor ... ® biometric technology, experience and expertise. The ... of Benchmark designed specifically for hearables, and Benchmark ...
(Date:12/20/2016)... -- The rising popularity of mobility services such ... significant interest in keyless access systems. Following the ... (BLE), biometrics and near-field communication (NFC) are poised ... technologies in the automotive industry. This evolution from ... opens the market to specialist companies such as ...
(Date:12/16/2016)... Research and Markets has announced the addition ... to 2021" report to their offering. ... The biometric vehicle access system market, ... of 14.06% from 2016 to 2021. The market is estimated to ... 854.8 Million by 2021. The growth of the biometric vehicle access ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... , ... January 19, 2017 ... ... advanced software solutions for pharmaceutical research and development (R&D), today announced the ... omic data analysis and interpretation for the rapidly evolving field of precision ...
(Date:1/19/2017)... Bethesda, MD (PRWEB) , ... January 18, 2017 ... ... for the National Institutes of Health (NIH) to update its Data Sharing Policy. ... a “scoreable” element of grant applications subject to the existing policy. AMIA recommended ...
(Date:1/19/2017)...  Northwest Biotherapeutics, Inc. (OTCQB: NWBO) ("NW Bio"), a ... operable and inoperable solid tumor cancers, announced today that ... NW Bio, will present at the Phacilitate Immunotherapy World ... Regency Hotel in Miami, Florida . ... "New Therapeutic Approaches – Expanding the Reach of Cancer ...
(Date:1/18/2017)... , Jan. 18, 2017   Boston Biomedical ... compounds designed to target cancer stemness pathways, will feature ... compound, napabucasin, at the 2017 ASCO Gastrointestinal Cancers Symposium, ... . Napabucasin is an orally-administered ... targeting STAT3. i Cancer stem cells (CSCs) possess ...
Breaking Biology Technology: