Navigation Links
DNA sequencing uncovers secrets of white cliffs of Dover
Date:6/13/2013

The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature.

Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global climate for over 200 million years, so is used as a model system for studying how physical, chemical and biological processes regulate the Earth's systems. The algae form pale chalky cases called coccoliths which during the spring bloom can be seen from space in the seas around the UK. E. huxleyi directly links to climate change through the production of dimethylsulfide (DMS), which induces cloud formation and blocks solar radiation.

Thanks to new technology next generation DNA sequencing 13 different isolates were sequenced from around the world, and compared to a complete sequence constructed for E. huxleyi strain CCMP1516. The allowed the team to understand the influences of different environmental conditions on E. huxleyi physiology. The international team found that E. huxleyi possess a higher number of genes than previously published marine phytoplankton genomes, and that most genes were present in multiple copies.

Dr Mark Van Der Giezen from the University of Exeter said: "Using comprehensive analysis to compare different strains of the algae, we demonstrated that E. huxleyi should no longer be considered a single species. Substantial variation in the genome indicates contrasting metabolic composition and supports the idea that E. huxleyi is a species complex."

Comparing patterns, or phylogenetic relationships, in the genomes of the different strains identified three groups which did not relate to geographic origin nor genome size. Further research into the genomes revealed that the E. huxleyi genome includes core regions shared by all samples with some variable elements. Regions with high levels of tandem repeats and low complexity may have allowed rapid evolutionary adaptation over many millions of years, allowing current strains to live in a range of light conditions.

The study of the E. huxleyi genome shows many unexpected features that may be unique or common in microalgae warranting further investigation. For example, metabolic pathways, known previously only in fungi and animals that allow lipid synthesis were found. Using this new insight into an age-old algae, there is future potential for E. huxleyi to be used to synthesise nutritional supplements, biofuels, feedstock and polymer precursors, which may make E. huxleyi a valuable species for cutting-edge biotechnology.


'/>"/>

Contact: Jo Bowler
j.bowler@exeter.ac.uk
44-013-927-22062
University of Exeter
Source:Eurekalert

Related biology news :

1. Powerful sequencing technology decodes DNA folding pattern
2. Sequencing works in clinical setting to help -- finally -- get a diagnosis
3. The sequencing of the tomato genome
4. DNA Sequencing: Emerging Technologies and Applications
5. Next-generation sequencing technology opens doors to discoveries
6. University of North Texas Health Science Center Advances Forensic Research by Investing in Semiconductor DNA Sequencing Technology
7. Exome sequencing gives cheaper, faster diagnosis in heterogeneous disease
8. An error-eliminating fix overcomes big problem in 3rd-gen genome sequencing
9. Exome sequencing of health condition extremes can reveal susceptibility genes
10. New genomic sequencing method enables smarter anaysis of individual cells
11. US-Russian collaboration develops new method for sequencing dark matter of life from a single cell
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/21/2016)... Massachusetts , March 22, 2016 ... facial recognition with passcodes for superior security   ... ), a leading provider of secure digital communications services, ... their biometric technology and offer enterprise customers, particularly those ... secure facial recognition and voice authentication within a mobile ...
(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
(Date:3/11/2016)... 2016 --> ... "Image Recognition Market by Technology (Pattern Recognition), by Component ... Deployment Type (On-Premises and Cloud), by Industry Vertical and ... MarketsandMarkets, the global market is expected to grow from ... by 2020, at a CAGR of 19.1%. ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... ... May 02, 2016 , ... F.E.E.D. Co., the Feline ... their revolutionary, veterinarian-designed product for indoor cats. The NoBowl Feeding System replaces the ... food the way nature intended. NoBowls make cats happy and healthy. , Since ...
(Date:4/29/2016)... ... April 29, 2016 , ... During ... transform technology into a viable company, CereScan’s CEO, John Kelley, joined other Denver ... recognized leader and mentor in the Denver area business community, shared his top ...
(Date:4/28/2016)... 2016 Q BioMed Inc. ... CEO  was featured in an article he wrote ... Fear To Tread: http://www.lifescienceleader.com/doc/accelerators-enter-when-vcs-fear-to-tread-0001 ... is an essential business journal for life science ... to Big Pharmas. Their content is designed to ...
(Date:4/27/2016)... Boston (PRWEB) , ... April 27, 2016 , ... ... driven by semantic web technology, today announced that it has been named to The ... life sciences, financial services and other markets, Cambridge Semantics serves the needs of end ...
Breaking Biology Technology: