Navigation Links
DNA-linked nanoparticles form switchable 'thin films' on a liquid surface

UPTON, NYScientists seeking ways to engineer the assembly of tiny particles measuring just billionths of a meter have achieved a new firstthe formation of a single layer of nanoparticles on a liquid surface where the properties of the layer can be easily switched. Understanding the assembly of such nanostructured thin films could lead to the design of new kinds of filters or membranes with a variable mechanical response for a wide range of applications. In addition, because the scientists used tiny synthetic strands of DNA to hold the nanoparticles together, the study also offers insight into the mechanism of interactions of nanoparticles and DNA molecules near a lipid membrane. This understanding could inform the emerging use of nanoparticles as vehicles for delivering genes across cellular membranes.

"Our work reveals how DNA-coated nanoparticles interact and re-organize at a lipid interface, and how that process affects the properties of a "thin film" made of DNA-linked nanoparticles," said physicist Oleg Gang who led the study at the Center for Functional Nanomaterials (CFN, at the U.S. Department of Energy's Brookhaven National Laboratory. The results will be published in the June 11, 2014 print edition of the Journal of the American Chemical Society.

Like the molecule that carries genetic information in living things, the synthetic DNA strands used as "glue" to bind nanoparticles in this study have a natural tendency to pair up when the bases that make up the rungs of the twisted-ladder shaped molecule match up in a particular way. Scientists at Brookhaven have made great use of the specificity of this attractive force to get nanoparticles coated with single synthetic DNA strands to pair up and assemble in a variety of three-dimensional architectures. The goal of the present study was to see if the same approach could be used to achieve designs of two-dimensional, one-particle-thick films.

"Many of the applications we envision for nanoparticles, such as optical coatings and photovoltaic and magnetic storage devices, require planar geometry," said Sunita Srivastava, a Stony Brook University postdoctoral researcher and the lead author on the paper. Other groups of scientists have assembled such planes of nanoparticles, essentially floating them on a liquid surface, but these single-layer arrays have all been static, she explained. "Using DNA linker molecules gives us a way to control the interactions between the nanoparticles."

As described in the paper, the scientists demonstrated their ability to achieve differently structured monolayers, from a viscous fluid-like array to a more tightly woven cross-linked elastic meshand switch between those different statesby varying the strength of the pairing between complementary DNA strands and adjusting other variables, including the electrostatic charge on the liquid assembly surface and the concentration of salt.

When the surface they used, a lipid, has a strong positive charge it attracts the negatively charged DNA strands that coat the nanoparticles. That electrostatic attraction and the repulsion between the negatively charged DNA molecules surrounding adjacent nanoparticles overpower the attractive force between complementary DNA bases. As a result, the particles form a rather loosely arrayed free-floating viscous monolayer. Adding salt changes the interactions and overcomes the repulsion between like-charged DNA strands, allowing the base pairs to match up and link the nanoparticles together more closely, first forming string-like arrays, and with more salt, a more solid yet elastic mesh-like layer.

"The mechanism of this phase transition is not obvious," said Gang. "It cannot be understood from the repulsion-attraction interactions alone. With the help of theory, we reveal that there are collective effects of the flexible DNA chains that drive the system in the particular states. And it is only possible when the particle sizes and the DNA chain sizes are comparableon the order of 20-50 nanometers," he said.

As part of the study, the scientists examined the different configurations of the nanoparticles on top of the liquid layer using x-ray scattering at Brookhaven's National Synchrotron Light Source (NSLS, They also transferred the monolayer produced at each salt concentration to a solid surface so they could visualize it using electron microscopy at the CFN.

"Creating these particle monolayers at a liquid interface is very convenient and effective because the particles' two-dimensional structure is very 'fluid' and can be easily manipulatedunlike on a solid substrate, where the particles can easily get stuck to the surface," Gang said. "But in some applications, we may need to transfer the assembled layer to such a solid surface. By combining the synchrotron scattering and electron microscopy imaging we could confirm that the transfer can be done with minimal disruption to the monolayer."

The switchable nature of the monolayers might be particularly attractive for applications such as membranes used for purification and separations, or to control the transport of molecular or nano-scale objects through liquid interfaces. For example, said Gang, when particles are linked but move freely at the interface, they may allow an objecta moleculeto pass through the interface. "However, when we induce linkages between particles to form a mesh-like network, any object larger than the mesh-size of the network cannot penetrate through this very thin film. "

"In principle, we can even think about such on-demand regulated networks to adjust the mesh size dynamically. Because, of the nanoscale size-regime, we might envision using such membranes for filtering proteins or other nanoparticles," he said.

Understanding how synthetic DNA-coated nanoparticles interact with a lipid surface may also offer insight into how such particles coated with actual genes might interact with cell membraneswhich are largely composed of lipidsand with one another in a lipid environment.

"Other groups have considered using DNA-coated nanoparticles to detect genes within cells, or even for delivering genes to cells for gene therapy and such approaches," said Gang. "Our study is the first of its kind to look at the structural aspects of DNA-particle/lipid interface directly using x-ray scattering. I believe this approach has significant value as a platform for more detailed investigations of realistic systems important for these new biomedical applications of DNA-nanoparticle pairings," Gang said.


Contact: Karen McNulty Walsh
DOE/Brookhaven National Laboratory

Related biology news :

1. Are silver nanoparticles harmful?
2. Hybrid copper-gold nanoparticles convert CO2
3. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
4. From pomegranate peel to nanoparticles
5. Palladium-gold nanoparticles clean TCE a billion times faster than iron filings
6. Paints and coatings containing bactericidal agent nanoparticles combat marine fouling
7. Oh, my stars and hexagons! DNA code shapes gold nanoparticles
8. Nanoparticles added to platelets double internal injury survival rate
9. Nanoparticles reboot blood flow in brain
10. UC Davis researchers develop new drug delivery system for bladder cancer using nanoparticles
11. Synthetic and biological nanoparticles combined to produce new metamaterials
Post Your Comments:
Related Image:
DNA-linked nanoparticles form switchable 'thin films' on a liquid surface
(Date:11/17/2015)... -- Vigilant Solutions announces today that Mr. Dick W. ... --> --> Mr. Boyce ... at TPG Capital, one of the largest global investment ... revenue.  He founded and led TPG,s Operating Group, which ... 1997 to 2013.  In his first role, he served ...
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
(Date:11/12/2015)... 12, 2015  Arxspan has entered into an ... Harvard for use of its ArxLab cloud-based suite ... The partnership will support the institute,s efforts to ... research information internally and with external collaborators. The ... managing the Institute,s electronic laboratory notebook, compound and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... PHILADELPIA, PA (PRWEB) , ... November 24, 2015 , ... ... young entrepreneurs at competitive events in five states to develop and pitch their BIG ... student projects from each state are competing for votes to win the title of ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ... Chief Financial Officer, will participate in the Piper Jaffray 27 th ... , NY on Tuesday, December 1, 2015, at 8:30 a.m. EST ...
(Date:11/24/2015)... , Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced ... 29, 2015 at 11:00 a.m. Israel time, at ... 98 Yigal Allon Street, 36 th Floor, Tel Aviv, ... Eric Paneth and Izhak Tamir to the Board of ... as external directors; , approval of an amendment to certain terms ...
(Date:11/24/2015)... SAN FRANCISCO , Nov. 24, 2015 /PRNewswire/ ... today announced that Emily Leproust, Ph.D., Twist Bioscience ... Piper Jaffray Healthcare Conference on December 1, 2015 ... Palace Hotel in New York City. ... . Twist Bioscience is on ...
Breaking Biology Technology: