Navigation Links
DNA computation gets logical at the Weizmann Institute of Science

Biomolecular computers, made of DNA and other biological molecules, only exist today in a few specialized labs, remote from the regular computer user. Nonetheless, Tom Ran and Shai Kaplan, research students in the lab of Prof. Ehud Shapiro of the Weizmann Institute's Biological Chemistry, and Computer Science and Applied Mathematics Departments have found a way to make these microscopic computing devices 'user friendly,' even while performing complex computations and answering complicated queries.

Shapiro and his team at Weizmann introduced the first autonomous programmable DNA computing device in 2001. So small that a trillion fit in a drop of water, that device was able to perform such simple calculations as checking a list of 0s and 1s to determine if there was an even number of 1s. A newer version of the device, created in 2004, detected cancer in a test tube and released a molecule to destroy it. Besides the tantalizing possibility that such biology-based devices could one day be injected into the body a sort of 'doctor in a cell' locating disease and preventing its spread biomolecular computers could conceivably perform millions of calculations in parallel.

Now, Shapiro and his team, in a paper published online today in Nature Nanotechnology, have devised an advanced program for biomolecular computers that enables them to 'think' logically. The train of deduction used by this futuristic device is remarkably familiar. It was first proposed by Aristotle over 2000 years ago as a simple ifthen proposition: 'All men are mortal. Socrates is a man. Therefore, Socrates is mortal.' When fed a rule (All men are mortal) and a fact (Socrates is a man), the computer answered the question 'Is Socrates Mortal?' correctly. The team went on to set up more complicated queries involving multiple rules and facts, and the DNA computing devices were able to deduce the correct answers every time.

At the same time, the team created a compiler a program for bridging between a high-level computer programming language and DNA computing code. Upon compiling, the query could be typed in something like this: Mortal(Socrates)?. To compute the answer, various strands of DNA representing the rules, facts and queries were assembled by a robotic system and searched for a fit in a hierarchical process. The answer was encoded in a flash of green light: Some of the strands had a biological version of a flashlight signal they were equipped with a naturally glowing fluorescent molecule bound to a second protein which keeps the light covered. A specialized enzyme, attracted to the site of the correct answer, removed the 'cover' and let the light shine. The tiny water drops containing the biomolecular data-bases were able to answer very intricate queries, and they lit up in a combination of colors representing the complex answers.


Contact: Yivsam Azgad
Weizmann Institute of Science

Related biology news :

1. Computational actinide chemistry: Are we there yet?
2. Computational mathematical sciences receives NSF grant for undergraduate research
3. Computation to unravel how genes are regulated and shed light on how cells become different
4. Computational biochemist uncovers a molecular clue to evolution
5. Penn presents inaugural symposium on applied mathematics and computational science
6. Supercomputer provides massive computational boost to biomedical research at TGen
7. Computation and genomics data drive bacterial research into new golden age
8. New computational technique allows comparison of whole genomes as easily as whole books
9. Oxford Journals and the International Society for Computational Biology announce new partnership
10. 7th [BC]2 Basel Computational Biology Conference
11. Computational model examines the pathways of Alzheimers that strikes at the young
Post Your Comments:
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... --  The Weather Company , an IBM Business (NYSE: ... in which consumers will be able to interact with IBM ... voice or text and receive relevant information about the product ... have long sought an advertising solution that can create a ... and valuable; and can scale across millions of interactions and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/24/2016)...  Regular discussions on a range of subjects including policies, ... entities said Poloz. Speaking at a lecture to ... he pointed to the country,s inflation target, which is set ... "In certain areas there needs ... economic goals, why not sit down and address strategy together?" ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in ... Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio ... practical tips, tools, and strategies for clinical researchers. , “The landscape of how ...
(Date:6/23/2016)... 2016 A person commits a crime, and the ... track the criminal down. An outbreak of foodborne ... Administration (FDA) uses DNA evidence to track down the bacteria ... far-fetched? It,s not. The FDA has increasingly used a complex, ... foodborne illnesses. Put as simply as possible, whole genome sequencing ...
Breaking Biology Technology: