Navigation Links
DNA catalysts do the work of protein enzymes
Date:3/19/2013

CHAMPAIGN, Ill. Illinois chemists have used DNA to do a protein's job, creating opportunities for DNA to find work in more areas of biology, chemistry and medicine than ever before.

Led by Scott Silverman, a professor of chemistry at the University of Illinois at Urbana-Champaign, the researchers published their findings in the journal Proceedings of the National Academy of Sciences.

Ideally, researchers would like to be able to design and build new catalysts from scratch that can do exactly what they want. Many enzymes make small modifications to the building blocks of proteins, amino acids, which can create large changes in a finished protein. However, designing or even modifying protein enzymes is a very difficult task, thanks to their complexity and size.

"Protein enzymes are the workhorses of biology," Silverman said. "They do most of the catalytic activity. Our idea is to use another kind of catalyst, artificial DNA sequences, to modify the side chains on proteins, which therefore affects their biological function."

One of the most important and difficult reactions in nature is the addition or removal of a phosphate group. In the realm of proteins, the amino acids serine and tyrosine can have phosphate added to or removed from them, which can alter the protein's function or turn enzyme activity on or off. Without help from catalysts, such reactions take a very long time to occur on the order of thousands to millions of years. So nature uses enzymes called kinases or phosphatases to catalyze these reactions.

Silverman's group identified artificial DNA catalysts that can do phosphatase's job of removing phosphate from serine and tyrosine. Demonstrating that DNA can catalyze such difficult reactions is an important step forward in designing and using DNA catalysts.

"At this point, this is basic science. We're trying to figure out, what kind of reactions can DNA catalyze? And how do we find DNA catalysts that can catalyze these reactions?" Silverman said.

To find the DNA catalysts that can perform a phosphatase reaction, the researchers used a process called in vitro selection. This method searches through vast numbers of DNA sequences to identify the few that could perform a specific activity. The researchers then synthesize those DNA strands and use them for various applications.

"We believe that DNA catalysts can be a very useful tool in the future to study these kinds of protein modifications," said graduate student and co-author Jagadeeswaran Chandrasekar. "To have DNA that you can synthesize on a machine and do catalytic activity on large molecules like proteins is very exciting. We can make fresh new DNA sequences, without requiring a natural starting point, and perform important reactions."

The researchers tested their DNA catalysts' activity in the presence of other large, non-specific proteins, to find out if they would function in an environment resembling the cell. The DNA catalysts were not bothered by the extra company, giving the researchers hope that one day their DNA catalysts could be used for practical applications in vivo.

Next, the researchers will continue to refine the in vitro selection process and hope to identify more DNA catalysts, designing and building molecules to perform specific functions.

"This kind of finding is enabling because it shows that DNA catalysis of biologically interesting processes is possible," Silverman said, "and with this outcome we can have confidence that the broader objectives of this kind of research are likely to be achievable."


'/>"/>

Contact: Liz Ahlberg
eahlberg@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. KIT: Processes at the surface of catalysts
2. Painting with catalysts: Nano-engineered materials for detoxifying water by use of sunlight
3. Catalysts that produce green fuel
4. IU biologists offer clearer picture of how protein machine systems tweak gene expression
5. Making memories: How 1 protein does it
6. Embryonic development protein active in cancer growth
7. More effective method of imaging proteins
8. The loss of a protein makes jump the tumor to the lymph node
9. Gold nanoantennas detect proteins
10. The Japanese traditional therapy, honokiol, blocks key protein in inflammatory brain damage
11. New hope for treating Alzheimers Disease: A role for the FKBP52 protein
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
DNA catalysts do the work of protein enzymes
(Date:5/16/2016)... YORK , May 16, 2016   EyeLock ... solutions, today announced the opening of an IoT Center ... to strengthen and expand the development of embedded iris ... an unprecedented level of convenience and security with unmatched ... authenticate one,s identity aside from DNA. EyeLock,s platform uses ...
(Date:5/9/2016)... DUBAI , UAE, May 9, 2016 ... choice when it comes to expanding freedom for high ... Even in today,s globally connected world, there ... online conferencing system could ever duplicate sealing your deal ... are obtaining second passports by taking advantage of citizenship ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... GUELPH, ON , June 27, 2016 /PRNewswire/ - BIOREM ... it has been advised by its major shareholders, Clean ... LP, United States based venture ... common shares of Biorem (on a fully diluted, as ... for the disposition of their entire equity holdings in ...
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... ... operations for Amgen, will join the faculty of the University of North ... adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on ...
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of ... higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... of the cuvette holder. , FireflySci has developed several Agilent flow cell product ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: