Navigation Links
DNA barcodes change our view on how nature is structured
Date:1/21/2014

How you seek is what you find

To understand how feeding interactions are structured, researchers from Finland and Canada chose to focus on one of the simplest food webs on Earth: the moths and butterflies of Northeast Greenland, as attacked by their specialist enemies, parasitic wasps and flies developing on their prey (called host), killing it in the process.

"What we found in this system was mind-boggling", explains Helena Wirta, the lead author of the study. "When we supplemented the traditional technique of rearing host larvae until the emergence of either the adult or its enemy with modern molecular techniques, every measure of food web structure changed. All of a sudden, we found three times as many interactions between species as before. On average, most types of predator proved less specialized than assumed, and most types of prey were attacked by many more predators than we had thought. Thus, the full web was simply more tightly knit than we initially believed."

"To understand just how much the method affected our perception of our single target web, we may compare variation among different techniques to variation among food webs previously described for different parts of the world", explains Tomas Roslin, who initiated the work. "Web structure simply varied manifold more among our different techniques than among localities from the UK to Japan. Thus, whatever we think that we know about food web structure across the globe may be dictated as much by how we have searched as by how species really interact."

The revealing inner of a bug

What allowed the researchers to dissect the food web with a new precision was the use of DNA barcodes.

"The basis of this approach is to identify species based on variation in a given gene", says Sean Prosser, who spent months in the lab fine-tuning the approach. "By targeting gene regions which differ between the predator and the prey, we were able to selectively detect both immature predators from within their prey, and the remains of the larval meal (prey) from the stomachs of adult predators. By then comparing the sequences obtained to a reference library of DNA sequences of all species in the region, we were able to determine exactly who had attacked whom."

"One of the great beauties of this approach is that it allows us to retrace the life history of some really obscure players in the game", explains Gergely Vrkonyi, an international expert of parasitic wasps involved in the project. "In almost any system, some of the predators will be really hard to investigate. As larvae, some of our target predators attack their prey when they are hidden in the ground or vegetation, where we humans will never discover them. By instead looking for prey remains in the guts of the more easily-detectable adult predators, we were able to establish the importance of these otherwise hidden links for the overall structure of the food web."

A five-year project

The current work is the culmination of a five-year exploration of insect food webs of Zackenberg by Tomas Roslin and Gergely Vrkonyi.

"Why we wanted to work in the High Arctic was to keep things simple" says Tomas. "If you want to keep track of who interacts with whom, you should realize that things very quickly get out of hands with increasing diversity. With only a handful of species to keep track of, you can finally be confident that you really detect what goes on and what does not."

"And to be honest, we should not forget the beauty of the landscape and the excitement of working in one of the largest uninhabited regions on Earth", adds Gergely. "We have had polar bears tackling our traps and musk oxen chasing us. Such encounters tend to keep you alert."

The start of something new

"Most exciting of all are the vistas opened by our findings", says Helena. "What we have done so far is to apply these techniques to one of the simplest food webs on the globe and yet they completely revamped our view on how this very web was structured. Now you can just imagine what will happen when we employ this approach in other settings. We still have no clue of what prior patterns may hold when we revisit them with this more sensitive looking glass."

Her coauthor Paul Hebert, who proposed the DNA barcoding concept a decade ago and now sees it applied to resolving more and more questions in nature, is prepared to take the vision one step further. "I believe that the techniques advanced here are game-changing when it comes to understanding how nature works", says he "In only a few years, the augmentation of this approach may allow us to pick up any bug, and recover DNA sequences from most other organisms which it has ever touched. Now inferring the whole interaction history of an organism, that will allow us to establish the structure of ecological interactions with a precision previously unconceived!"


'/>"/>

Contact: Tomas Roslin
tomas.roslin@helsinki.fi
358-408-683-611
University of Helsinki
Source:Eurekalert  

Related biology news :

1. Virus barcodes offer rapid detection of mutated strains
2. Holding a mirror to brain changes in autism
3. New study will help protect vulnerable birds from impacts of climate change
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Fielding questions about climate change
6. Glacier-fed river systems threatened by climate change
7. How old are these rocks, how were they made, and how long ago did these geologic changes happen?
8. Energy requirements make Antarctic fur seal pups vulnerable to climate change
9. Why spring is blooming marvelous (and climate change makes it earlier)
10. Declines in Caribbean coral reefs pre-date damage resulting from climate change
11. Some corals like it hot: Heat stress may help coral reefs survive climate change
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
DNA barcodes change our view on how nature is structured
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... subsidiary of Infosys (NYSE: INFY ), and Samsung ... global partnership that will provide end customers with a ... and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... for financial services, but it also plays a fundamental part ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/13/2016)... CHICAGO , April 13, 2016  IMPOWER physicians ... are setting a new clinical standard in telehealth ... By leveraging the higi platform, IMPOWER patients can ... weight, pulse and body mass index, and, when they ... quick and convenient visit to a local retail location ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Sequenom, Inc. (NASDAQ: SQNM ), ... through the development of innovative products and services, announced ... United States denied its petition to review ... Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") are not ... the Supreme Court,s Mayo Collaborative Services v. Prometheus Laboratories ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks ... to industrial engineering, was today awarded as one ... selection of the world,s most innovative companies. Ginkgo ... scale for the real world in the nutrition, ... engineers work directly with customers including Fortune 500 ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
Breaking Biology Technology: