Navigation Links
DNA art imitates life: Construction of a nanoscale Mobius strip
Date:10/4/2010

The enigmatic Mbius strip has long been an object of fascination, appearing in numerous works of art, most famously a woodcut by the Dutchman M.C. Escher, in which a tribe of ants traverses the form's single, never-ending surface.

Scientists at the Biodesign Institute at Arizona State University's and Department of Chemistry and Biochemistry, led by Hao Yan and Yan Liu, have now reproduced the shape on a remarkably tiny scale, joining up braid-like segments of DNA to create Mbius structures measuring just 50 nanometers acrossroughly the width of a virus particle.

Eventually, researchers hope to capitalize on the unique material properties of such nano-architectures, applying them to the development of biological and chemical sensing devices, nanolithography, drug delivery mechanisms pared down to the molecular scale and a new breed of nanoelectronics.

The team used a versatile construction method known as DNA origami and in a dramatic extension of the technique, (which they refer to as DNA Kirigami), they cut the resulting Mbius shapes along their length to produce twisted ring structures and interlocking loops known as catenanes.

Their work appears in today's advanced online issue of the journal Nature Nanotechnology. Graduate students involved in this work include Dongran Han and Suchetan Pal in the Yan group.

Making a Mbius strip in the everyday world is easy. Cut a narrow strip of paper, bring the two ends of the strip close to each other so that they match, but give them a half-twist before fastening the ends together with a piece of scotch tape. The resulting Mbius strip, which has only one surface and one boundary edge, is an example of a topological form.

"As nanoarchitects," Yan says, "we strive to create two classes of structuregeometric and topological." Geometric structures in two and three dimensions abound in the natural world, from complex crystal shapes to starfish, and unicellular organisms like diatoms. Yan cites such natural forms as a boundless source of inspiration for human-designed nanostructures.

Topology, a branch of mathematics, describes the spatial properties of shapes that may be twisted, stretched or otherwise deformed to yield new shapes. Such shape deformations may profoundly alter the geometry of an object, as when a donut shape is pinched and stretched into a figure eight, but the surface topology of such forms is unaffected.

Nature is also rich in topological structures, Yan notes, including the elegant Mbius. The circulations of earth's warmer and cooler ocean currents for example, describe a Mbius shape. Other topological structures are common to biological systems, particularly in the case of DNA, the 3 billion chemical bases of which are packed by the chromosome inside the cell, using topological structures. "In bacteria, plasmid DNA is wound into a supercoil," Yan explains. "Then the enzymes can come in and cut and reconfigure the topology to relieve the torsion in the supercoil so that all the other cellular machinery can have access to the gene for replication, transcription and so forth."

To form the Mbius strip in the current study, the group relied on properties of self-assembly inherent in DNA. A strand of DNA is formed from combinations of 4 nucleotide bases, adenine (A), thymine (T), cytosine (C) and guanine (G), which follow one another on the strand like necklace beads. These nucleotide beads can bind to each other according to a strict rule: A always pairs with T, C with G. Thus, a second, complementary strand of DNA binds with the first to form the DNA double helix.

In 2006, Paul Rothemund at Cal Tech demonstrated that the process of DNA self-assembly could be used to produce pre-designed 2D nanoarchitectures of astonishing variety. Thus, DNA origami emerged as a powerful tool for nanostructure design. The method relies on a long, single stranded segment of DNA, used as a structural scaffold and guided through base pairing to assume a desired shape. Short, chemically synthesized "staple strands," composed of complementary bases are used to hold the structure in place.

After synthesis and mixing of DNA staples and scaffold strands, the structure is able to self-assemble in a single step. The technique has been used to produce remarkable nanostructures of smiley faces, squares, disks, geographic maps, and even words, at a scale of 100 nm or less. But the creation of topological forms capable of reconfiguration, like those produced by nature, has proven more challenging.

Once the tiny Mbius structures had been created, they were examined with atomic force- and transmission electron microscopy. The startling images confirm that the DNA origami process efficiently produced Escher-like Mbius strips measuring less than a thousandth the width of a human hair. Yan notes that the Mbius forms displayed both right and left handed twists. Imaging permitted the handedness or chirality of each flattened nanostructure to be determined, based on the height differences observed at the overlapping areas.

Next, the team demonstrated the topological flexibility of the Mbius forms produced, using a folding and cuttingor DNA Kirigamitechnique. The Mbius can be modified by cutting along the length of the strip at different locations. Cutting a Mbius along its centerline yields a new structurea looped form containing a twist of 720 degrees or 4 half-twists. The design, which the group calls a Kirigami-Ring is no longer a Mbius as it has two edges and two surfaces. The Mbius may also be cut along its length one-third of the way into its width, producing a Kirigami-Catenanea Mbius strip interlinked with a supercoiled ring.

To accurately cut the Mbius nanostructures, a technique known as strand displacement was used, in which the DNA staples holding the central helix in place are outfitted with so-called toe-hold strands which protrude from the central helix. A complementary strand binds to the toehold segment, removing the staples and allowing the Mbius to fall open into either the Kirigami-Ring or Kirigami-Catenane.

Again, the successful synthesis of these forms was confirmed through microscopy, with the Kirigami-Ring structures gradually relaxing into figure eights.

Yan stresses that the success of the new study relied heavily on lead author Dongran Han's remarkable sense of three-dimensional space, allowing him to design geometrical and topological structures in his head. "Han and also Pal are particularly brilliant students," Yan says, pointing out that the complex conceptualization of the nanoarchitectures in their research is primarily performed without computer aid. The group hopes in the future to create software capable of simplifying the process.

"We want to push the Origami-Kirigami technology to create more sophisticated structures to demonstrate that we can make any arbitrary shape or topology using self-assembly," Han says.

Having made inroads into sculpture, painting and even literature, (particularly, the novels of French author Alain Robbe-Grillet), topological structures are now poised to influence scientific developments at the tiniest scale.


'/>"/>

Contact: Joe Caspermeyer
joseph.caspermeyer@asu.edu
480-727-0369
Arizona State University
Source:Eurekalert  

Related biology news :

1. Early-life experience linked to chronic diseases later in life: UBC research
2. Explorers census hard-to-see sea life: microbes, tiny animals key to Earths food, carbon systems
3. Urban wildlife: Some birds crave cement, not trees
4. Rhythm of life: Music shows potential in stroke rehabilitation
5. High construction cost for cycads
6. HHS Secretary Sebelius announces $1 billion in NIH Recovery Act awards for research construction
7. Nanomaterials poised for big impact in construction
8. Fat stem cells safe for breast reconstruction when cancer is dormant, says Pitt team
9. Nanoscale coating protect products -- and the economy
10. Simplicity is crucial to design optimization at nanoscale
11. Nanoscale changes in collagen are a tipoff to bone health
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
DNA art imitates life: Construction of a nanoscale Mobius strip
(Date:2/2/2016)... YORK , Feb. 2, 2016 ... of that Rising Market Are you interested ... analysis forecasts revenues for checkpoint inhibitors. Visiongain,s report ... market, submarket, product and national level. Avoid ... discover what progress, opportunities and revenues those emerging ...
(Date:2/2/2016)... , Feb. 2, 2016  Based on its ... & Sullivan recognizes US-based Intelligent Retinal Imaging Systems ... Sullivan Award for New Product Innovation. IRIS, a ... North America , is poised to ... growing diabetic retinopathy market. The IRIS technology presents ...
(Date:2/1/2016)... Fla. , Feb. 1, 2016  Wocket® smart wallet ( www.wocketwallet.com ... and television personality, Joey Fatone . Las Vegas ... greet fans. --> Las Vegas , where ... --> The new video ad was filmed at the Consumer ... appeared at the Wocket booth to meet and greet fans. ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... February 10, 2016 Early-career researchers ... Peru , Uganda and ... in health and nutrition   Indonesia , ... and Yemen are being honored for ... They are also celebrated for mentoring young women scientists who are pursuing ...
(Date:2/10/2016)... New York, New York (PRWEB) , ... ... ... Regeneron Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it has joined the ... vaccines and immunotherapies for infectious diseases and cancer. , The Human ...
(Date:2/10/2016)... ... 10, 2016 , ... Benchmark Research, a fully-integrated network of ... long-standing principal investigators (PI) to the roles of Chief Medical Officer, Clinical Research ... Laurence Chu, a Benchmark Research PI in the Austin office, will assume the ...
(Date:2/10/2016)... San Mateo, CA (PRWEB) , ... February 10, ... ... Registry of Multiplex Testing (PROMPT), a research registry built on the secure online ... in September 2014. More than 1,600 participants have joined the PROMPT study, which ...
Breaking Biology Technology: