Navigation Links
Curbing C. difficile's toxin production

BOSTON (Sept. 5, 2007) As if being admitted to the hospital werent bad enough, patients, once admitted, are at higher risk of becoming infected with a superbug bacterium, Clostridium difficile (C. difficile). The toxins produced by C. difficile kill human intestinal cells by causing them to burst open, allowing the bacteria to use them as fuel. This results in severe diarrhea and, in rare cases, death. Abraham Linc Sonenshein, PhD, and colleagues from the Department of Molecular Biology and Microbiology at the Tufts University School of Medicine (TUSM) and the Sackler School of Graduate Biomedical Sciences at Tufts, have discovered how a protein called CodY regulates the genes that control production of the dangerous toxins. Understanding the relationship between CodY and C. difficile is an important step toward the development of a drug that may prevent hospital patients from falling ill.

The C. difficile bacteria only produce toxins when they are in need of food, explains Sonenshein, professor of microbiology at TUSM and corresponding author on the paper to be published in Molecular Microbiology. We found that the CodY protein, in essence, monitors the hunger level of C. difficile, preventing toxin production when the bacteria have enough to eat. Sonenshein, along with first author Sean Dineen, PhD, and other Tufts colleagues developed a series of experiments to investigate the importance of CodY and how this protein communicates to bacteria that it is time to search for new sources of food.

The researchers first developed a mutant strain of C. difficile bacteria that does not make the protein CodY, and compared the amount of toxin produced by the mutant strain of bacteria to the amount of toxin produced by normal bacteria. The mutant strain produced much higher levels of toxin. The presence of CodY seems to tell the bacterial cells that they are well-fed and there is no reason to make toxin that kills intestinal cells for fuel. Lack of CodY activity, however, indicates to the bacteria that they are lacking key nutrients and that it is time to make the toxins they need to get food from the host cells.

To determine how CodY tells the bacteria not to make toxins, Sonenshein and colleagues removed DNA from the bacteria, and observed the interaction of the DNA and the CodY protein in vitro. They found that CodY targeted the region of the bacterial chromosome that includes the toxin genes. When CodY senses that the cell has enough nutrients, it binds to this gene region, and prevents the bacterium from making toxin, says Sonenshein. Conversely, when food is scarce, the CodY protein does not bind to these genes, allowing C. difficile to make the toxins needed to attack intestinal cells.

Knowing what turns on, and more importantly, what turns off the toxin-producing genes in C. difficile opens the door for treatment and prevention options. It is possible that, based on our findings, a new drug could be developed that would trick CodY into thinking there is enough fuel for the bacteria, causing CodY to remain bound to the toxin gene region and thus suppressing toxin production.


Contact: Siobhan Gallagher
Tufts University, Health Sciences

Related biology news :

1. Defensins neutralize anthrax toxin
2. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
3. Tetanus toxin found to have therapeutic properties
4. Structures of marine toxins provide insight into their effectiveness as cancer drugs
5. Prenatal exposure to marine toxin causes lasting damage
6. UCSD study finds anthrax toxins also harmful to fruit flies
7. Scientists design potent anthrax toxin inhibitor
8. Anthrax inhibitor counteracts toxin, may lead to new therapeutics
9. Scientists reveal how deadly toxin hijacks cells
10. Scientists develop a way to make the deadliest toxin known even more toxic
11. Yale researchers find environmental toxins disruptive to hearing in mammals
Post Your Comments:
(Date:4/13/2017)... According to a new market research report "Consumer ... Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - ... to grow from USD 14.30 Billion in 2017 to USD 31.75 Billion ... ... MarketsandMarkets Logo ...
(Date:4/6/2017)... , April 6, 2017 Forecasts ... ANPR, Document Readers, by End-Use (Transportation & Logistics, Government ... Oil, Gas & Fossil Generation Facility, Nuclear Power), Industrial, ... Other) Are you looking for a definitive ... ...
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
(Date:10/11/2017)... ... 11, 2017 , ... Disappearing forests and increased emissions are the main causes ... each year. Especially those living in larger cities are affected by air pollution related ... the most pollution-affected countries globally - decided to take action. , “I knew I ...
(Date:10/11/2017)... Bay, Florida (PRWEB) , ... October 11, 2017 ... ... and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its novel ... (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the cell ...
(Date:10/10/2017)... (PRWEB) , ... October 10, ... ... development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed ... targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with ...
Breaking Biology Technology: