Navigation Links
Culprits and cures for obesity may reside in our gut
Date:7/25/2011

Obesity in the United States is reaching ever more alarming proportions, posing a severe menace to public health and exacerbating a crisis in health care costs both domestically and worldwide.

Now, Rosa Krajmalnik-Brown and fellow researchers at the Biodesign Institute at Arizona State University, in collaboration with Dr. John DiBaise and colleagues at the Mayo Clinic, Scottsdale, are looking into what may be a leading driver in body weight regulationthe diverse zoo of microorganisms inhabiting the human gut.

The team will explore the contributions of so-called gut microflora to the success or failure of two popular treatments for obesity, hopefully gaining new insight into how body weight is managed (or mismanaged) based on the demographics of these microorganisms. "We normally use microorganisms to solve environmental problems such as water clean-up and energy production," Krajmalnik-Brown says. "Now we are excited to have the opportunity to assess the contributions of our best collaborators, i.e., microorganisms, to human digestion and health."

The new study, supported by a 4 year, $1.7 million grant from the NIH, is part of a continuing collaboration between Biodesign and the Mayo Clinic. It began when John DiBaise, a gastroenterologist at Mayo, started to explore the underlying mechanisms leading to obesity and to contemplate possible alternatives to gastric bypass surgerycurrently, one of the most effective treatments for morbid obesity.

DiBaise enlisted the help of Bruce Rittmann, director of Biodesign's Swette Center for Environmental Biotechnologyan expert on the use of microbial communities for human benefit, particularly in the areas of bioremediation and renewable bioenergy. Fellow researcher Krajmalnik-Brown, principle investigator for the new study, brings her detailed knowledge of microbial ecology to the table. She will apply modern high-throughput sequencing techniques to assess complex microbial communities in the guts of patients who have undergone gastric bypass surgery, comparing these with the microbial populations found in normal weight and obese subjects. Rittmann will develop a mathematical model which will integrate ecological and metabolic results gathered in the project.

The group had earlier speculated that the composition of microflora in the human gut may play a vital role in directing the way energy extracted from food is stored and expended.

Bacteria involved in fermentation, as well as methanogens belonging to the Archaea domain, seem to act syntrophicallythat is, in a collaboration that accelerates efficient fermentation of polysaccharides and carbohydrates. Some of the fermentation products are absorbed via the intestinal wall and ultimately converted to fat. If left unchecked, such processes can contribute to obesity.

The crisis of obesity is acute, affecting some 4 million Americans. In the United States, the prevalence in adults has increased by over 75 percent since 1980. More than half of the U.S. population is currently overweight and 1 in 3 Americans qualify as clinically obese. Obesity-related illnesses kill about 300,000 Americans every year, many succumbing to diabetes, cardiovascular disease, cancer, and other obesity-associated maladies.

Currently, the most effective treatment for obesity is some form of bariatric surgery, in which a portion of the stomach and small intestine are bypassed, limiting the amount and type of food an individual can eat. In the case of morbid obesity, such surgeries are the only form of treatment that consistently achieve and maintain major weight loss, thereby decreasing the incidence of co-morbid afflictions and improving survival prospects and quality of life.

The two most successful variants of this surgeryknown as the Roux-en-Y gastric bypass (RYGP) and laparoscopic adjustable band gastric bypass (LAGB)will be evaluated in the current study. Having established in previous work that patients receiving these treatments display a unique composition of gut microbiota, the group will explore in depth how the dramatic microbial changes observed in post-surgery patients contribute to the success or failure of the procedure.

In order to evaluate the contribution of gut microbial communities for achieving and maintaining weight loss following gastric bypass, the new study has set 4 research goals: 1) Use high-throughput sequencing to identify fermenters that interact with a particular group of H2-consuming microorganisms; 2) Track and quantify the presence of luminal and mucosal H2-consuming microorganisms using quantitative PCR; 3) Track metabolic products and determine syntrophies and metabolic functions of the microorganisms associated with energy extraction; and 4) Integrate and interpret the results using an ecological approach through mathematical modeling.

Ultimately, new insights into the composition and dynamics of gut microbial communities, particularly the delicate syntrophy existing between fermenting Bacteria and methanogenic Archaea, will improve the accuracy of prognosis for those undergoing bariatric surgery. Further, such understanding may help identify individuals at risk of developing obesity, while opening the door to eventual, non-invasive therapies, based on management of gut microflora.


'/>"/>

Contact: Joseph Caspermeyer
Joseph.Caspermeyer@asu.edu
Arizona State University
Source:Eurekalert  

Related biology news :

1. UT Southwestern researchers uncover culprits in life-threatening clotting disorder
2. Parente Randolph Secures Access to New Corporate Headquarters With BIO-key(R) Biometric Identification
3. Combined stem cell-gene therapy approach cures human genetic disease in vitro
4. Super sticky barnacle glue cures like blood clots
5. National Institutes of Health Secures Armory with Patent-Pending Technology
6. New year, new vitamin C discovery: It cures mice with accelerated aging disease
7. Gene therapy cures canines of inherited form of day blindness, Penn veterinary researchers say
8. Researchers: Cures to diseases may live in our guts
9. NextCAT Inc. secures $250,000 to commercialize biodiesel technology developed at Wayne State
10. NextCAT secures license agreement for advanced biofuel technology from Wayne State
11. SPO Secures Equity Line Facility of US$5 Million
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Culprits and cures for obesity may reside in our gut
(Date:12/15/2016)... 15, 2016   WaferGen Bio-systems, Inc. (NASDAQ: ... company, announced today that on December 13, 2016, it ... The Nasdaq Stock Market LLC which acknowledged that, as ... WaferGen,s common stock had been at $1.00 or greater ... compliance with Listing Rule 5550(a)(2) of the Nasdaq Stock ...
(Date:12/15/2016)... LONDON , Dec. 14, 2016 "Increase ... mobile biometrics market" The mobile biometrics market is expected ... USD 49.33 billion by 2022, at a CAGR of ... by factors such as the growing demand for smart ... mobile transactions. "Software component is expected to ...
(Date:12/7/2016)... December 7, 2016 According to a new market research ... Tool (Facial Expression, Voice Recognition), Service, Application Area, End User, And Region - ... grow from USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, ... Continue Reading ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... BD (Becton, Dickinson and Company) (NYSE: BDX ... host a live webcast of its Annual Meeting of Shareholders on ... The webcast can be accessed from the BD corporate website at ... 31, 2017. ... About BD BD is a global medical technology company that ...
(Date:1/18/2017)... , Jan. 18, 2017   Boston Biomedical , ... designed to target cancer stemness pathways, will feature data ... napabucasin, at the 2017 ASCO Gastrointestinal Cancers Symposium, held ... . Napabucasin is an orally-administered investigational ... STAT3. i Cancer stem cells (CSCs) possess the ...
(Date:1/18/2017)... (PRWEB) , ... January 18, 2017 , ... ... for Clinical Ops Executives 2017 in its continued commitment to the advancement of ... makers to discuss current issues related to clinical trial planning and management. ...
(Date:1/18/2017)... ... 18, 2017 , ... Announced in December 2016, RoosterBio is ... Secretary of Commerce Penny Pritzker has announced the award of a new National ... announced the award of a new Advanced Regenerative Manufacturing Institute (ARMI). These are ...
Breaking Biology Technology: