Navigation Links
Crystal structure shows how motor protein works
Date:9/18/2011

The crystal structure of the dynamin protein one of the molecular machines that makes cells work has been revealed, bringing insights into a class of molecules with a wide influence on health and disease.

"It's a really cool structure," said Jodi Nunnari, professor and chair of molecular and cellular biology at UC Davis and senior author of the paper, to be published Sept. 18 in the journal Nature. "This is a really important class of molecules for regulating membrane dynamics."

The detailed structure reveals exactly how the dynamin protein can form large assemblies that pinch off bubbles, or vesicles, from cell membranes. These vesicles allow a cell to "eat" proteins, liquids or other items from the outside, compartmentalize them and move them around within itself.

Marijn Ford, a postdoctoral scholar in Nunnari's laboratory, mapped the crystal structure of dynamin-1 in collaboration with Simon Jenni, a research fellow at Harvard University.

Dynamin belongs to a large family of proteins that, in the right conditions, can self-assemble into larger structures and generate force. Those properties of self-assembly and movement can be harnessed in the cell for different functions.

Dynamin-1 itself is involved in making vesicles in nerve cells at the points where nerves form connections, or synapses, with each other. Nerve cells communicate through chemical messengers (neurotransmitters) that are released from and taken up by vesicles. Altering the balance of these messengers can affect mental function. For example, an important class of antidepressant drugs works by affecting the uptake of the neurotransmitter serotonin.

The new crystal structure shows exactly how the individual dynamin proteins can line up to form a helix, and then move by ratcheting alongside each other.

It also shows that part of the protein can interact with lipids in cell membranes. That could allow different types of dynamin protein to interact with subtly different types of membrane, specializing their function.

Understanding these miniature motors also might make it possible one day to engineer cells that can do new and different tasks, Nunnari said.


'/>"/>
Contact: Andy Fell
ahfell@ucdavis.edu
530-752-4533
University of California - Davis
Source:Eurekalert

Related biology news :

1. Crystals detect threats to national security
2. Nano-diamond qubits and photonic crystals
3. Quartz crystal microbalances enable new microscale analytic technique
4. X-ray crystallography reveals structure of precursor to blood-clotting protein
5. New type of liquid crystal promises to improve performance of digital displays
6. How do your crystals grow?
7. A crystal ball for predicting the effects of global climate change
8. Cholesterol crystals incite inflammation in coronary arteries
9. Ancestral Eve crystal may explain origin of lifes left-handedness
10. Researchers envision high-tech applications for multiferroic crystals
11. Scientists watch as peptides control crystal growth with switches, throttles and brakes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. ... have received the prestigious international IAIR Award for the most innovative ... ... Maldives Immigration ... Algeen (small picture on the right) have received the IAIR award for ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... March 21, 2017   Neurotechnology , a ... technologies, today announced the release of the ... provides improved facial recognition using up to 10 ... single computer. The new version uses deep neural-network-based ... and it utilizes a Graphing Processing Unit (GPU) ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... They call it the “hairy ball.” ... depiction of a system of linkages and connections so complex and dense that ... computer science at Worcester Polytechnic Institute (WPI) and director of the university’s bioinformatics ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... announced today that they have entered into a multiyear collaboration to identify and ... researchers with additional tools for gene editing across all applications. , Under the ...
(Date:10/12/2017)... ca (PRWEB) , ... October 12, 2017 , ... ... the Surgical Wound Market with the addition of its newest module, US Hemostats ... $1.2B market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: