Navigation Links
Crohn's disease research
Date:7/17/2014

University of Delaware researchers have identified a protein, hiding in plain sight, that acts like a bodyguard to help protect and stabilize another key protein, that when unstable, is involved in Crohn's disease. The fundamental research points to a possible pathway for developing an effective therapy for the inflammatory bowel disease.

The research, by Catherine Leimkuhler Grimes, assistant professor of chemistry and biochemistry at UD, and Vishnu Mohanan, doctoral student in biological sciences, is published in the July 4 issue of the Journal of Biological Chemistry. The study was funded by a grant from the National Institutes of Health (NIH). As the scientists point out, our immune system provides the first line of defense against invading pathogens, a task even more challenging in the human gut, where over a trillion commensal bacteria live resident microorganisms that help convert food into protein, vitamins and minerals.

To distinguish "bad" versus "good" bacteria, our bodies rely on a complex network of receptors that can sense patterns that are unique to bacteria, such as small fragments of bacterial cell wall. The receptors recognize and bind to these fragments, triggering an immune response to take out the "bad guys" or control the growth of the "good guys."

However, when one of these receptors breaks down, or mutates, an abnormal immune response can occur, causing the body to mount an immune response against the "good" bacteria. Chronic inflammatory disorders, such as Crohn's disease, are hypothesized to arise as a result.

The UD team focused on a protein called NOD2 nucleotide-binding oligomerization domain containing protein 2. More than 58 mutations in the NOD2 gene have been linked with various diseases, and 80 percent of these mutations are connected specifically to Crohn's disease, according to Grimes.

In experiments to unveil NOD2's signaling mechanisms and where they break down, "we stumbled on this chaperone molecule," says Mohanan, who was the lead author of the scientific article.

The chaperone molecule was HSP70, which stands for "heat shock protein 70." It assists with the folding of proteins into their correct three-dimensional shapes, even when cells are under stress from elevated body temperatures, such as a fever.

Grimes said she was a little skeptical at first about pursuing studies with HSP70 because it is a commonly known protein, but she found Mohanan's initial data intriguing.

"Vishnu found that if we increased the expression level of HSP70, the NOD2 Crohn's mutants were able to respond to bacterial cell wall fragments. A hallmark of the NOD2 mutations is inability to respond to these fragments. Essentially, Vishnu found a fix for NOD2, and we wanted to determine how we were fixing it."

In further experiments, Mohanan created a tagged-wild-type NOD2 cell line in which NOD2 levels nearly matched the levels found in nature (versus "super" levels that might stimulate an artificial response) and found that NOD2 became more stabilized and degraded more slowly when treated with HSP70. In fact, HSP70 increased the half-life of NOD2 by more than four hours.

"Basically, HSP70 keeps the protein around it kind of watches over and protects NOD2, and keeps it from going in the cellular trash can," Grimes explains.

The researchers tested three human cell lines in their study: kidney cells, colon cells and white blood cells. In the next phase of the study, patient tissue will be examined through a collaboration with Nemours/A.I. duPont Hospital for Children to determine if NOD2 levels can be controlled via HSP70 expression.

"We want to figure out why the mutation in NOD2 results in an increase in inflammation," says Mohanan. "Right now, we have limited knowledge. Once the signaling mechanism is figured out, we will have the keystone."

Mohanan, who is from the state of Kerala in south India, previously was involved in brain cancer research at UD. He co-authored a journal article in the field, but wanted to further his knowledge and skills through interdisciplinary study.

When the opportunity arose to work with Grimes, Mohanan says he jumped at the chance. He was the first graduate student to join Grimes's laboratory group in the Department of Chemistry and Biochemistry two years ago, which now includes 13 budding scientists, from postdoctoral fellows and doctoral students to undergraduates. Grimes, who did her graduate work at Princeton and Harvard, recently was named a 2014 Pew Scholar in the Biomedical Sciences.

Based on its increasing incidence worldwide, Crohn's disease has been identified as an emerging global disease. In the United States alone, as many as 700,000 people may be afflicted, predominantly adolescents and young adults between 15 and 35 years of age, according to the Crohn's and Colitis Foundation of America.

Identifying proteins that interact and stabilize NOD2 is a first step to developing novel therapies to treat Crohn's disease, the UD research team says.


'/>"/>

Contact: Donna O'Brien
dobrien@udel.edu
University of Delaware
Source:Eurekalert  

Related biology news :

1. NIH scientists identify gene linked to fatal inflammatory disease in children
2. New study links dredging to diseased corals
3. Researchers advance understanding in immune response to infectious disease
4. Transplantation of new brain cells reverses memory loss in Alzheimers disease model
5. Researchers find organic pollutants not factor in turtle tumor disease
6. New hope for treatment of Alzheimers disease
7. Little too late: Researchers identify disease that may have plagued 700-year-old skeleton
8. USC Stem Cell scientists lay a TRAP for disease
9. ADSCs transplantation promotes neurogenesis in Alzheimers disease
10. New technology reveals insights into mechanisms underlying amyloid diseases
11. ACS Infectious Diseases: Unique chemistry journal names editor
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Crohn's disease research
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by ... Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to ... USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is ... and 8th June 2018 in San Francisco, CA. The Summit brings together current and ... distinguished CEOs, board directors and government officials from around the world to address key ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving air ... living in larger cities are affected by air pollution related diseases. , That is ... globally - decided to take action. , “I knew I had to take action ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive ... a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
Breaking Biology Technology: