Navigation Links
Creating smaller, and more powerful, integrated circuits

How's this for precision? Researchers with the University of Houston Cullen College of Engineering are developing technology to knock single atoms off a silicon wafer without disturbing atoms of other materials nearby.

Chemical and biomolecular engineering professor Vince Donnelly and Demetre Economou, Hugh Roy and Lilly Cranz Cullen Distinguished University Chair with that same department, are supported in this project by an 18-month, $150,000 grant from the National Science Foundation.

Their effort focuses on plasma etching, where ions are shot at a material to create extremely small patterns and features. Specifically, they are exploring ways to etch wafers of silicon with atomic precision. Such an advance could be used to create radically smaller and more powerful integrated circuits, which are at the heart of practically all computing and electronic devices.

To create these extremely fine and precise features, researchers use a mask essentially a stencil that has the desired patterns already formed on it. The masked substrate is then placed in a plasma. There, some of the plasma's ions pass through the mask's patterned holes and etch away the layer just beneath it, creating a perfect copy.

The big challenge to this approach, though, is controlling the kinetic energy the energy of movement of the ions that pass through the mask.

As the ions strike the silicon wafer, the wafer becomes electrically charged. This charge ends up slightly repelling the positively charged ions essentially lowering their kinetic energy. As a result, the beam becomes too weak to etch away the underlying material. The industry overcomes this problem by using AC voltage to neutralize charge. This however, leads to a loss of ion energy control.

"The goal is to have all the ions coming in with the same energy so you can selectively etch one material and not etch another," said Donnelly. "The materials have a threshold for etching. You have to exceed a certain energy to etch a material. If you can select the energy of the ions to be between the thresholds of silicon and silicon dioxide, for example, you can etch silicon and absolutely not the silicon dioxide."

Donnelly and Economou, though, believe they can overcome this problem by applying small, quick bursts of positive voltage to the silicon wafer. Doing so, they said, should neutralize the wafer's charge. As a result, the ion beam can be set to and remain at a kinetic energy that is in the sweet spot between two materials such as silicon and silicon dioxide etching.

"Atomic-scale etching should contribute to the creation of the most advanced integrated circuits ever built. If we can control the kinetic energy of the ions, we can pattern the silicon wafer with that high level of precision," said Donnelly.


Contact: Jeannie Kever
University of Houston

Related biology news :

1. Scientists creating new diagnostic and bioinformatics tools for psychotic disorders
2. The new frontier: Creating and marketing food products that prevent disease and obesity
3. Inspired by deep sea sponges: Creating flexible minerals
4. Recreating natural complex gene regulation
5. New method for creating long-lived stem cells used for bone replacement
6. Creating a future of personalized medicine: U-M forms joint venture for DNA diagnostics
7. Gecko feet hold clues to creating bandages that stick when wet
8. Creating energy from light and air - new research on biofuel cells
9. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
10. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
11. Risk assessment team on Bt plants wins Integrated Pest Management Award
Post Your Comments:
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/2/2016)... , June 2, 2016 Perimeter ... Platforms, Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... market will generate revenues of $17.98 billion in 2016. ... DVTEL Inc, a leader in software and hardware technologies ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator (YI) ... of the Class of 2016 were selected from a pool of 128 applicants ... the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... STACS DNA ... Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a ... STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further ...
(Date:6/23/2016)... 2016 Andrew D ... Published recently in ... from touchONCOLOGY, Andrew D Zelenetz , discusses ... care is placing an increasing burden on healthcare ... therapies. With the patents on many biologics expiring, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining ... Chicago. The result of a collaboration among several companies with expertise in toolholding, ...
Breaking Biology Technology: