Navigation Links
Creating ideal neural cells for clinical use
Date:4/13/2009

LA JOLLA, Calif., April 13, 2009 -- Investigators at the Burnham Institute for Medical Research (Burnham) have developed a protocol to rapidly differentiate human embryonic stem cells (hESCs) into neural progenitor cells that may be ideal for transplantation. The research, conducted by Alexei Terskikh, Ph.D., and colleagues, outlines a method to create these committed neural precursor cells (C-NPCs) that is replicable, does not produce mutations in the cells and could be useful for clinical applications. The research was published on March 13 in the journal Cell Death and Differentiation.

When the C-NPCs created using the Terskikh protocol were transplanted into mice, they became active neurons and integrated into the cortex and olfactory bulb. The transplanted cells did not generate tumor outgrowth.

"The uniform conversion of embryonic stem cells into neural progenitors is the first step in the development of cell-based therapies for neurodegenerative disorders or spinal injuries," said Dr. Terskikh. "Many of the methods used to generate neural precursor cells for research in the lab would never work in therapeutic applications. This protocol is very well suited for clinical application because it is robust, controllable and reproducible."

Dr. Terskikh notes that the extensive passaging (moving cells from plate to plate) required by some protocols to expand the numbers of neural precursor cells limits the plasticity of the cells, can introduce mutations and may lead to the expression of oncogenes. The Terskikh protocol avoids this by using efficient conversion of hESCs into primary neuroepithelial cells without the extensive passaging.

The scientists were able to rapidly neuralize the hESCs by culturing them in small clusters in a liquid suspension. The cells developed the characteristic "rosettes" seen in neuroepithelial cells. The C-NPCs were then cultured in monolayers. Immunochemical and RT-PCR analysis of the cells demonstrated that they were uniformly C-NPCs. Whole-genome analysis confirmed this finding. Immunostaining and imaging showed that the cells could be differentiated into three distinct types of neural cells. The team then demonstrated that the C-NPCs differentiated into neurons after transplantation into the brains of neonatal mice.

This research received funding from the National Institutes of Health and the California Institute for Regenerative Medicine.


'/>"/>

Contact: Josh Baxt
jbaxt@burnham.org
858-795-5236
Burnham Institute
Source:Eurekalert

Related biology news :

1. Argonne scientists develop techniques for creating molecular movies
2. Better beer: College team creating anticancer brew
3. Argonne scientists discover possible mechanism for creating handedness in biological molecules
4. Neural stem cell study reveals mechanism that may play role in cancer
5. MIT aids creation of neural prosthetic devices
6. Neural cell transplants may help those with Parkinsons disease
7. NeuralIQ Expands Global Leadership Team, Names Donnie Blanks CEO
8. Neural mechanisms of value bias in the human visual cortex
9. Obesity starts in the head? 6 newly discovered genes for obesity have a neural effect
10. I feel your pain: Neural mechanisms of empathy
11. Neural mapping paints a haphazard picture of odor receptors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)...  Aware, Inc. (NASDAQ: AWRE ), a leading ... for its quarter and year ended December 31, 2016. ... $3.9 million compared to $6.9 million in the same quarter ... was $0.6 million compared to $2.6 million in the fourth ... 2016 was $0.5 million, or $0.02 per diluted share, which ...
(Date:2/7/2017)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce that the latest release ... flexible and award winning eClinical solution, is now available ... is a proven Software-as-a-Service (SaaS) clinical research technology platform ... also delivers an entire suite of eClinical tools to ...
(Date:2/3/2017)... , Feb. 3, 2017  Texas Biomedical Research Institute ... Larry Schlesinger as the Institute,s new President ... Biomed effective May 31, 2017. He is currently the Chair ... of the Center for Microbial Interface Biology at Ohio State ... as the new President and CEO of Texas Biomed," said ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... , ... February 21, 2017 , ... ... organizations to build connected digital health applications, announced a partnership with Redox, a ... to seamlessly connect to many clinical systems while keeping data secure in the ...
(Date:2/21/2017)... ... February 21, 2017 , ... Genedata, a leading provider ... announced the establishment of Genedata Limited as a new subsidiary in the United ... in life science informatics. Creating the UK subsidiary reinforces Genedata’s commitment to collaborate ...
(Date:2/21/2017)... ... February 21, 2017 , ... The medical potential of stem cells is both ... of medicine, due to their differentiating characteristics. Stem cells are unique as the have ... be induced to become tissue or organic-specific cells with special functions. , Stem ...
(Date:2/21/2017)... ... February 21, 2017 , ... ... manufacturing facility at its headquarters laboratory in Poway, California. Based upon 12 ... of both in-house personnel and consultants, VetStem constructed and validated a state-of-the-art GMP ...
Breaking Biology Technology: