Navigation Links
Creating ideal neural cells for clinical use
Date:4/13/2009

LA JOLLA, Calif., April 13, 2009 -- Investigators at the Burnham Institute for Medical Research (Burnham) have developed a protocol to rapidly differentiate human embryonic stem cells (hESCs) into neural progenitor cells that may be ideal for transplantation. The research, conducted by Alexei Terskikh, Ph.D., and colleagues, outlines a method to create these committed neural precursor cells (C-NPCs) that is replicable, does not produce mutations in the cells and could be useful for clinical applications. The research was published on March 13 in the journal Cell Death and Differentiation.

When the C-NPCs created using the Terskikh protocol were transplanted into mice, they became active neurons and integrated into the cortex and olfactory bulb. The transplanted cells did not generate tumor outgrowth.

"The uniform conversion of embryonic stem cells into neural progenitors is the first step in the development of cell-based therapies for neurodegenerative disorders or spinal injuries," said Dr. Terskikh. "Many of the methods used to generate neural precursor cells for research in the lab would never work in therapeutic applications. This protocol is very well suited for clinical application because it is robust, controllable and reproducible."

Dr. Terskikh notes that the extensive passaging (moving cells from plate to plate) required by some protocols to expand the numbers of neural precursor cells limits the plasticity of the cells, can introduce mutations and may lead to the expression of oncogenes. The Terskikh protocol avoids this by using efficient conversion of hESCs into primary neuroepithelial cells without the extensive passaging.

The scientists were able to rapidly neuralize the hESCs by culturing them in small clusters in a liquid suspension. The cells developed the characteristic "rosettes" seen in neuroepithelial cells. The C-NPCs were then cultured in monolayers. Immunochemical and RT-PCR analysis of the cells demonstrated that they were uniformly C-NPCs. Whole-genome analysis confirmed this finding. Immunostaining and imaging showed that the cells could be differentiated into three distinct types of neural cells. The team then demonstrated that the C-NPCs differentiated into neurons after transplantation into the brains of neonatal mice.

This research received funding from the National Institutes of Health and the California Institute for Regenerative Medicine.


'/>"/>

Contact: Josh Baxt
jbaxt@burnham.org
858-795-5236
Burnham Institute
Source:Eurekalert

Related biology news :

1. Argonne scientists develop techniques for creating molecular movies
2. Better beer: College team creating anticancer brew
3. Argonne scientists discover possible mechanism for creating handedness in biological molecules
4. Neural stem cell study reveals mechanism that may play role in cancer
5. MIT aids creation of neural prosthetic devices
6. Neural cell transplants may help those with Parkinsons disease
7. NeuralIQ Expands Global Leadership Team, Names Donnie Blanks CEO
8. Neural mechanisms of value bias in the human visual cortex
9. Obesity starts in the head? 6 newly discovered genes for obesity have a neural effect
10. I feel your pain: Neural mechanisms of empathy
11. Neural mapping paints a haphazard picture of odor receptors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... April 27, 2017  Pendant Biosciences, Inc. (formerly Nanoferix, ... modification and drug delivery technologies, today announced that it ... @ Toronto . ... Pendant Biosciences, noted, "We are excited to become part ... community, and are honored to be the first ...
(Date:4/26/2017)... ... April 25, 2017 , ... LABS, Inc. (LABS) announced in December ... its extensive test menu: Nucleic Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) ... to offer NAT screening for blood donors under an Investigational New Drug (IND) study ...
(Date:4/25/2017)... ... 2017 , ... As part of the Stago EdVantage Virtual University ... DIC in order to illuminate this clinical problem for people unfamiliar with the topic. ... in a high degree of morbidity and mortality. DIC is a confusing disorder from ...
(Date:4/25/2017)... Los Gatos, California (PRWEB) , ... April 25, ... ... of business, Analytical Services and Metrology Partners.     , Covalent’s Analytical Services ... labs. Most samples can be measured within 24 hours of receipt. There are ...
Breaking Biology Technology: