Navigation Links
Creating energy from light and air - new research on biofuel cells
Date:5/8/2012

The aim of the research long-term is to develop more efficient biofuel cells, seen as the future of electronics. Because biofuel cells are powered by readily available biological materials, they have the potential to be used indefinitely when electricity is required at places where is it not possible to replace a battery or recharge them.

Most biofuel cells create electricity using enzymes that process glucose, but the Leeds research will focus on bacterial enzymes that can harness light or hydrogen gas to create energy. The work is funded by a 1.42m grant from the European Research Council.

Lead researcher, Dr Lars Jeuken, from the University's Faculty of Biological Sciences, says: "Technology that creates an electrical signal from a biochemical reaction is already in commercial use, for example in blood glucose biosensors. However, developing an efficient biofuel cell that can create sufficient electricity for general use has proved much more difficult. This is mainly because the systems developed to date have only limited control of how inorganic materials and biological molecules interact.

"Our research combines state of-the-art surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop electrodes with complete control of the biochemical interactions needed to create electricity. We now want to apply this to membrane proteins to generate energy from light and hydrogen."

In their simplest form, biofuel cells have two electrodes, one which removes electrons from a fuel for instance glucose or hydrogen whilst the other donates electrons to molecules of oxygen, making water. When these are connected by a wire, they form a circuit, resulting in an electrical current.

Dr Jeuken and his team have extensive experience in making electrodes that directly interact with enzymes located in the membranes that surround cells. This new project will begin by applying this technique to two specific groups of enzymes, one which harnesses light and the other, hydrogen. These are found in membranes of chloroplast the parts of cells which conduct photosynthesis or bacterial cells, both of which have promising applications in biofuel cells. The final part of the project will aim to connect electrodes to the membranes of living bacterial cells.

"Not only will this help scientists understand the role of different enzymes in making energy, but how best to capture and use this energy in electrical applications," says Dr Jeuken.

Dr Jeuken's research will also contribute to a new Interdisciplinary Centre for Microbial Fuel Cells (ICMFC), set up jointly between the Universities of Leeds, Sheffield and York. The Centre will bring together chemists from York, biophysicists such as Dr Jeuken from Leeds and engineers from Sheffield, to work together on improving the performance of microbial fuel cells, using a combination of synthetic biology and nanoengineering.


'/>"/>
Contact: Jo Kelly
jo@campuspr.co.uk
44-113-357-2103
University of Leeds
Source:Eurekalert

Related biology news :

1. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
2. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
3. Cutting-edge science creating solutions for African agriculture
4. Researchers develop new method for creating tissue engineering scaffolds
5. On the road to creating an affordable master instrument
6. Creating an electronic nose to sniff out tuberculosis from a patients breath
7. Studies detail triumphs, troubles of African innovators creating products for local health needs
8. Rare disease reveals new path for creating stem cells
9. Scripps Research scientists break barrier to creating potential therapeutic molecules
10. Creating new healthy ingredients by innovative milling techniques and processes for cereal grains
11. Creating a dream breed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... -- RAM Group , Singaporean based technology ... biometric authentication based on a novel  quantum-state ... perform biometric authentication. These new sensors are based on a ... Group and its partners. This sensor will have widespread ... security. Ram Group is a next generation sensor ...
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... a United States multicenter, prospective clinical study that demonstrates the accuracy of ... capable of identifying clinically significant acute bacterial and viral respiratory tract infections ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity of ... performing systematic gain-of-function studies. , This complement to loss-of-function studies, such as ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , ... of Cancer Research, London (ICR) and ... with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple ... as MUK nine . The University of ... is partly funded by Myeloma UK, and ICR will perform ...
(Date:10/10/2017)... (PRWEB) , ... October 10, ... ... development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed ... targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with ...
Breaking Biology Technology: