Navigation Links
Creating energy from light and air - new research on biofuel cells
Date:5/8/2012

The aim of the research long-term is to develop more efficient biofuel cells, seen as the future of electronics. Because biofuel cells are powered by readily available biological materials, they have the potential to be used indefinitely when electricity is required at places where is it not possible to replace a battery or recharge them.

Most biofuel cells create electricity using enzymes that process glucose, but the Leeds research will focus on bacterial enzymes that can harness light or hydrogen gas to create energy. The work is funded by a 1.42m grant from the European Research Council.

Lead researcher, Dr Lars Jeuken, from the University's Faculty of Biological Sciences, says: "Technology that creates an electrical signal from a biochemical reaction is already in commercial use, for example in blood glucose biosensors. However, developing an efficient biofuel cell that can create sufficient electricity for general use has proved much more difficult. This is mainly because the systems developed to date have only limited control of how inorganic materials and biological molecules interact.

"Our research combines state of-the-art surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop electrodes with complete control of the biochemical interactions needed to create electricity. We now want to apply this to membrane proteins to generate energy from light and hydrogen."

In their simplest form, biofuel cells have two electrodes, one which removes electrons from a fuel for instance glucose or hydrogen whilst the other donates electrons to molecules of oxygen, making water. When these are connected by a wire, they form a circuit, resulting in an electrical current.

Dr Jeuken and his team have extensive experience in making electrodes that directly interact with enzymes located in the membranes that surround cells. This new project will begin by applying this technique to two specific groups of enzymes, one which harnesses light and the other, hydrogen. These are found in membranes of chloroplast the parts of cells which conduct photosynthesis or bacterial cells, both of which have promising applications in biofuel cells. The final part of the project will aim to connect electrodes to the membranes of living bacterial cells.

"Not only will this help scientists understand the role of different enzymes in making energy, but how best to capture and use this energy in electrical applications," says Dr Jeuken.

Dr Jeuken's research will also contribute to a new Interdisciplinary Centre for Microbial Fuel Cells (ICMFC), set up jointly between the Universities of Leeds, Sheffield and York. The Centre will bring together chemists from York, biophysicists such as Dr Jeuken from Leeds and engineers from Sheffield, to work together on improving the performance of microbial fuel cells, using a combination of synthetic biology and nanoengineering.


'/>"/>
Contact: Jo Kelly
jo@campuspr.co.uk
44-113-357-2103
University of Leeds
Source:Eurekalert

Related biology news :

1. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
2. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
3. Cutting-edge science creating solutions for African agriculture
4. Researchers develop new method for creating tissue engineering scaffolds
5. On the road to creating an affordable master instrument
6. Creating an electronic nose to sniff out tuberculosis from a patients breath
7. Studies detail triumphs, troubles of African innovators creating products for local health needs
8. Rare disease reveals new path for creating stem cells
9. Scripps Research scientists break barrier to creating potential therapeutic molecules
10. Creating new healthy ingredients by innovative milling techniques and processes for cereal grains
11. Creating a dream breed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/15/2016)... ALBANY, New York , June 15, 2016 ... published a new market report titled "Gesture Recognition Market ... Trends and Forecast, 2016 - 2024". According to the ... at USD 11.60 billion in 2015 and is ... and reach USD 48.56 billion by 2024.  ...
(Date:6/9/2016)... Finland , June 9, 2016 ... National Police deploy Teleste,s video security solution to ensure the ... France during the major tournament ... data communications systems and services, announced today that its video ... Prefecture to back up public safety across the ...
(Date:6/3/2016)... , June 3, 2016 ... von Nepal hat ... Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung ... in der Produktion und Implementierung von Identitätsmanagementlösungen. ... Ausschreibung im Januar teilgenommen, aber Decatur wurde ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... Raleigh, NC (PRWEB) , ... December 01, 2016 ... ... the US Computational Science Symposium (CSS) and the popularity of US Single Day ... will take place in early Summer 2018, in Raleigh, NC. Topics of the ...
(Date:12/2/2016)... ... December 01, 2016 , ... Orthogonal, a ... their recent FDA Class II 510(k) clearance for their flagship medical device, SimplECG. ... remote cardiac monitoring devices that rely on cloth-based nanosensors. While other companies have ...
(Date:12/2/2016)... NEW YORK , Dec. 1, 2016   ... liquid photopurification, announced today that the Company has concluded ... has the right for a 90-day period to acquire ... invoice value of approximately USD 3.7 million.  ... an agreement with Tamarack under which Tamarack will seek ...
(Date:11/30/2016)... CA (PRWEB) , ... November 30, 2016 , ... ... a new moving magnet Voice Coil Actuator with a flexure design that ensures ... long life with cost-effective pricing and is ideally suited where extreme precision is ...
Breaking Biology Technology: