Navigation Links
Crafting a better enzyme cocktail to turn plants into fuel faster

RICHLAND, Wash. Scientists looking to create a potent blend of enzymes to transform materials like corn stalks and wood chips into fuels have developed a test that should turbocharge their efforts.

The new research, published in October in the journal Molecular BioSystems, is part of a worldwide effort to create fuels from plants that are plentiful and aren't part of the food supply. It's possible to do this today, but the process is costly, laborious and lengthy. The findings by chemists and colleagues at the Department of Energy's Pacific Northwest National Laboratory open the possibility that laboratory research that now takes months could be reduced to days, and that scientists will be able to assess more options for biofuel development than is possible today.

Many of today's efforts revolve around the fungus Trichoderma reesei, which introduced itself to U.S. troops during World War II by chewing through their tents in the Pacific theater. Seventy years later, T. reesei is a star in the world of biofuels because of its ability to churn out enzymes that chew through molecules like complex sugars.

The breakdown of large sugar polymers into smaller compounds that can then be further converted to fuel compounds is the final, crucial step in the effort to make fuels from materials like switchgrass and corn stalks. These plants and many others are full of energy, stored in carbon bonds, which can be converted into fuel, if scientists can find ways to free the compounds that store the energy from the tough structural material, known as lignocellulose, which holds the plants together.

Lignocellulose is what stands between you and a tankful of fuel created from corn stalks or switchgrass.

"The ultimate goal is to begin with a plant material like corn stalks, for instance, and to subject it to a cocktail of enzymes that would convert those plants to fuel," said chemist Aaron Wright, who led the PNNL team. "It takes a series of steps to do that, and the cost has to come down if these fuels are to compete seriously with traditional hydrocarbon-based fuels."

T. reesei chews through materials naturally, cutting through the chemical "wrapping" much like a person with scissors cuts through a tightly wrapped ribbon around a gift, freeing the inner contents for enjoyment. The fungus actually makes dozens of cutting enzymes, each of which attacks the wrapping differently. Chemists like Wright are trying to combine and improve upon the best ones to create a potent chemical cocktail, a mix of enzymes that accomplishes the task super efficiently. That would bring down the cost of producing biofuels.

Wright's study focused on a subset of the fungus's collection of cutting tools, on enzymes known as glycoside hydrolases. It's their job to break down complex sugars into simple sugars, a key step in the fuel production process.

To assess the effectiveness of mixtures of these enzymes, scientists must either measure the overall performance of the mixture, or they must test the component enzymes one at a time to see how each reacts to different conditions like temperature, pressure and pH.

Wright's team developed a way to measure the activity of each of the ingredients simultaneously, as well as the mixture overall. Instead of needing to run a series of experiments, each focusing on a separate enzyme, the team runs one experiment and tracks precisely how each of dozens of enzymes reacts to changing conditions.

A series of experiments detailing the activity of 30 enzymes, for instance, now might be accomplished in a day or two with the new technology, compared to several months using today's commonplace methods, the scientists say.

The key to the work is a chemical probe the team created to monitor the activity of many enzymes at once. The heart of the system, known as activity-based protein profiling, is a chemical probe that binds to glycoside hydrolases and gives off information indicating just how active each of those enzymes is moment by moment.

"Identifying exactly which enzymes are doing most of the work you need done is crucial for making this an economical process," said Wright. "We're trying to keep tabs on the precise activity of every enzyme as each goes through a very complex process, as conditions like temperature and pH vary, to measure their activity through each stage."

"We can test the whole mixture, and we can also tease out each individual contribution. People have not been able to do that all at once before," added Wright, whose study was funded by PNNL.

Many of the measurements for the study, such as the measures of protein activity using mass spectrometry, were done at EMSL, the DOE's Environmental Molecular Sciences Laboratory on the PNNL campus. Wright's team included Lindsey Anderson, David Culley, Beth Hofstad, Lacie Chauvign-Hines, Erika Zink, Samuel Purvine, Richard Smith, Stephen Callister, and Jon Magnuson, all of PNNL.


Contact: Tom Rickey
DOE/Pacific Northwest National Laboratory

Related biology news :

1. New methods for better purification of wastewater
2. Breakthroughs in Chikungunya research from A*STAR spell new hope for better treatment and protection
3. UNH researchers find African farmers need better climate change data to improve farming practices
4. Giant squids giant eyes: The better to see hungry whales with
5. Improved loblolly pines better for the environment, study finds
6. Fish larvae find the reef by orienting: The earlier the better
7. Intensive kidney dialysis indicates better survival rates than conventional dialysis
8. Modern hybrid corn makes better use of nitrogen, study shows
9. Bigger gorillas better at attracting mates and raising young
10. Better housing conditions for zebrafish could improve research results
11. Better plants for biofuels
Post Your Comments:
Related Image:
Crafting a better enzyme cocktail to turn plants into fuel faster
(Date:9/30/2015)... PALM BEACH GARDENS, Fla. , Sept. 30, 2015 ... Circuit earlier this month issued another key ruling in ... Commission,s (ITC,s) determination that Korean fingerprint scanner company Suprema ... the Tariff Act of 1930, a trade provision that ... connection with import trade, by infringing two of Crossmatch,s ...
(Date:9/29/2015)... -- News facts: , ... , Minimized design shrinks PC footprint , ... embedded Fujitsu PalmSecure authentication enable enterprises to realize benefits ... that good things come in small packages, with the ... desktop and mobile portfolio. Featuring workplace design that favors ...
(Date:9/28/2015)... 2015 CLEAR, the leading biometric ... traveler service is coming to Austin-Bergstrom International ... a frictionless experience, serious speed and enhanced ... offers our travelers an expedited security screening ... Jim Smith , Executive Director, Austin-Bergstrom International ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... Proove ... to announce their partnership with the Keck Medicine of the University of ... , The T.R.O.J.A.N. Study (Therapeutic Evaluation to Research Clinical Objectives Linking Genotypic and ...
(Date:10/12/2015)... Carolina (PRWEB) , ... October 12, 2015 , ... Spirax ... announce the release of the CSM-C 600 compact clean steam generator . ... steam that meets the requirements of HTM2031, HTM2010, and EN285 standards. The CMS-C ...
(Date:10/12/2015)... , October 12, 2015 cell ... 6.49 billion by 2022, according to a new report by ... attributed to rise in incidence of oncology diseases and other ... is expected to reach USD 6.49 billion by 2022, ... This growth in demand can be attributed to rise in ...
(Date:10/12/2015)... CAESAREA, Israel , October 12, 2015 ... of the Dario™ Diabetes Management Solution, today announced its ... a patient case study at MobiHealth,s 5th EAI ... Focused on, "Transforming healthcare through innovations in mobile and ... London, England from October 14 - ...
Breaking Biology Technology: