Navigation Links
Could the Spanish flu devastate us again?
Date:8/15/2011

The last century has seen two major pandemics caused by the H1N1 virus the Spanish Flu in 1918 and 2009's Swine Flu scare, which had thousands travelling with surgical masks and clamoring for vaccination. But scientists did not know what distinguished the Swine Flu from ordinary influenza in pigs or seasonal outbreaks in humans, giving it the power to travel extensively and infect large populations.

Until now. Prof. Nir Ben-Tal of Tel Aviv University's Department of Biochemistry and Molecular Biology and his graduate student Daphna Meroz, in collaboration with Dr. Tomer Hertz of Seattle's Fred Hutchinson Cancer Research Center, have developed a unique computational method to address this question. Published in the journal PNAS, the research presents a valuable tool for identifying viral mutation strategies, tracking various virus strains and developing vaccinations and anti-virals which can protect the population. It may also lead to more precisely designed vaccines to combat these viral mutations.

Their method reveals that mutations in the virus' amino acids in specific positions, such as antigenic receptor sites, may explain how the new strain successfully spread throughout the population in 2009. These alterations allowed the strain to evade both existing vaccines and the immune system's defenses.

Playing a game of cat and mouse

Viruses and our immune systems are constantly at war. A virus constantly mutates to escape notice, and our immune system strives to play catch-up to recognize the virus and mobilize the body's defense system.

To determine the spread of the 2009 human pandemic flu, Prof. Ben-Tal and his fellow researchers analyzed the hemagglutinin protein, which controls the virus' ability to fuse to a host cell in the body and transfer the genome which contains the information needed to make more virus. Eventually, he says, our immune system is able to recognize a virus' hemagglutinin, which triggers its reaction to fight against the virus.

Using a statistical learning algorithm, the researchers compared amino acid positions in the 2009 strain of H1N1 against the common flu and the strain of H1N1 found in Swine Flu, and discovered that major sequence changes that had occurred, altering antigenic sites and severely compromising the immune system's ability to recognize and react to the virus.

"Our new computation method showed that the main differences between the pandemic strain and the common seasonal H1N1 strain are in some 10 amino acid positions," Prof. Ben-Tal and Meroz report. "That's all it takes."

Experiments conducted by Sun-Woo Yoon, Dr. Mariette F. Ducatez and, Thomas P. Fabrizio from Prof. Richard J. Webby's lab at St. Jude Children's Research Hospital in Memphis, TN, confirmed some of the theoretical predictions.

Predicting pandemic

Like its 1918 predecessor the Spanish Flu, the 2009 pandemic flu will likely go into "hibernation" now that this particular strain has been recognized by the immune system, its power to infect has been compromised. But we were lucky: despite the relatively low death toll of the pandemic in 2009, similar to the number of deaths attributable to common seasonal flu, we might be facing more dangerous future outbreaks of mutated H1N1 varieties.

Because of the enormous mutation rate, says Prof. Ben-Tal, viruses can spread widely and rapidly, and vaccines are fairly inefficient. In the future, a refined version of this computational method may ultimately be used to generically compare various strains of viruses. This in-depth analysis might lead to the ability to predict how a strain will morph and determine if a pandemic could strike.

This is an important step towards revealing the amino acid determinants of the emergence of flu pandemics, but there is more work to be done, the researchers say.


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert

Related biology news :

1. Increased tropical forest growth could release carbon from the soil
2. Higher estrogen production in the breast could confer greater cancer risk than thought
3. New technology could capture ammonia from liquid manure
4. Cancer biomarker -- detectable by blood test -- could improve prostate cancer detection
5. Wearable device that vibrates fingertip could improve ones sense of touch
6. Finding could reduce antibiotic use in critically ill patients
7. Crop breeding could slash CO2 levels
8. Columbia engineering innovative hand-held lab-on-a-chip could streamline blood testing worldwide
9. Warming climate could give exotic grasses edge over natives
10. Getting 50-year-old Americans as healthy as Europeans could save Medicare and Medicaid $632 billion by 2050
11. Could patients own kidney cells cure kidney disease?
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/4/2017)... --  EyeLock LLC , a leader of iris-based identity ... and Trademark Office (USPTO) has issued U.S. Patent No. ... iris image with a face image acquired in sequence ... th issued patent. "The issuance ... multi-modal biometric capabilities that have recently come to market ...
(Date:3/30/2017)... 2017 The research team of The Hong ... fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery and ... speed and accuracy for use in identification, crime investigation, immigration control, ... ... A research team led ...
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
Breaking Biology News(10 mins):
(Date:6/20/2017)... , June 20, 2017  Kibow Biotech Inc., ... to announce the issuance of a new patent covering ... hyperuricemia by the U.S. Patent and Trademark Office on ... winner of the Buzz of Bio award in 2014 ... akin to developing non-drug approaches to chronic disease. Renadylâ„¢, ...
(Date:6/20/2017)... ... June 20, 2017 , ... Do More with OHAUS , With ... a trusted supplier in the weighing industry, to extending its expertise across the entire ... reactions, immunoassays, hybridizations and more, allowing for its customers to 'Do More' ...
(Date:6/19/2017)... ... 19, 2017 , ... As Vice President, Product Services, Mr. ... implementation, support, and client process and SOP development. , Mr. Guinter brings a ... roles for service providers and top-tier pharmaceuticals, and as an independent consultant supported ...
(Date:6/19/2017)... (PRWEB) , ... June 19, 2017 , ... Tunnell ... for over 50 years. One of the biggest challenges faced by life sciences, biotech ... regulatory affairs services team is Kati Abraham , who is well known in ...
Breaking Biology Technology: